
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02123-3
Eur. Phys. J. C 40, 205–227 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

Radiative Ke3 decays revisited

J. Gasser1, B. Kubis1,2, N. Paver3, M. Verbeni4

1 Institut für theoretische Physik, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
2 Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Nussallee 14–16, 53115 Bonn, Germany
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Abstract. Motivated by recent experimental results and ongoing measurements, we review the chiral
perturbation theory prediction for KL → π∓e±νeγ decays. Special emphasis is given to the stability of
the inner bremsstrahlung-dominated relative branching ratio versus the Ke3 form factors, and on the
separation of the structure-dependent amplitude in differential distributions over the phase space. For
the structure-dependent terms, an assessment of the order p6 corrections is given, in particular, a full
next-to-leading order calculation of the axial component is performed. The experimental analysis of the
photon energy spectrum is discussed, and other potentially useful distributions are introduced.
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1 Introduction

The amplitude for the semileptonic radiative decays KL →
π∓l±νlγ [Kl3γ ], with l = e, µ, can be divided into two com-
ponents: the inner bremsstrahlung (IB) that accounts for
photon radiation from the external charged particles and
which is determined by the non-radiative process KL →
π∓l±νl [Kl3]; and the structure-dependent (SD) amplitude,
also called “direct emission”, that describes photon ra-
diation from intermediate hadronic states and represents
genuinely new information with respect to the IB one.

Low’s theorem [1], applied to Kl3γ , states that the lead-
ing contributions in the expansion of the amplitude in pow-
ers of the photon four-momentum q, namely, the orders q−1

and q0, are completely determined in a model-independent
way by the IB via the Kl3 form factors and their first order
derivatives. The SD amplitude is then defined by the terms
of order q and higher. In [2, 3], the procedure of [1] was
followed to derive the q−1 and q0 terms of the IB ampli-
tudes for Kl3γ ; moreover, a qualitative, model-dependent,
assessment of the SD amplitudes was performed using vec-
tor meson dominance. In [4], the radiative decay modes for
both charged and neutral kaons were calculated, taking into
account IB terms only. Originally, the main interest was the
precision test of soft-photon theorems, allowed by the dom-
inance of IB and the fact that, for Kl3γ , the non-radiative
amplitude could in principle be studied extensively and
with high accuracy.

Later, Kl3γ decay amplitudes (including charged kaon
ones) were calculated at order p4 in chiral perturbation
theory (ChPT) in [5], and branching ratios were evaluated
for l = e, µ in a feasibility study for DAFNE [6]. An error
analysis and a dedicated study of decay distributions was
postponed to a later stage when precise data would become
available. It is one of the aims of the present work to provide
such an analysis.

ChPT allows for a systematic expansion of transition
amplitudes for low momenta of the pseudoscalar mesons [7,
8]. The lowest order amplitude is only of the IB-type with
constantKl3 form factors, and is independent of free param-
eters. In addition to providing momentum dependence of
the Kl3 form factors in the bremsstrahlung, theO(p4) terms
predict the existence of non-vanishing SD amplitudes (vec-
tor and axial-vector), unambiguously calculable in terms
of loop diagrams, low-energy constants of the strong La-
grangian L4 [8], and the chiral anomaly [9, 10]. While the
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anomaly does not require new physical parameters, the low-
energy constants are numerically already well-determined
from other, independent, meson processes. Consequently,
the experimental verification of the SD amplitude currently
represents a significant test of ChPT and, ultimately, of
QCD. Of course, since the expansion of the SD ampli-
tudes starts at O(p4), one may inquire about the role of
higher-order corrections, a point that will be addressed in
the sequel.

In practice, this experimental analysis is complicated
by the fact that the radiative Kl3 branching ratio is largely
dominated by the IB, while the SD contribution via IB–SD
interference is expected to be an effect at the percent-level
(the pure SD rate is negligibly small). On the other hand,
the characteristic q−1 behavior of the IB by far dominates
the lower (and intermediate) photon energy range [4], while
in the upper range where the SD effects become more signif-
icant, the number of events is severely reduced. In addition,
precise knowledge of the Kl3 form factors is required for
a reliable fit to the photon energy distribution, in order
to improve the sensitivity to signals of SD contributions
through deviations from the pure IB. All that calls for high
precision measurements of both Kl3γ and Kl3.

The first measurement of the decay KL → π±e∓νγ
with significant statistics was performed by the NA31 Col-
laboration [11] in a pioneering experiment, which proved
the possibility of precision measurements of this process.
Their result for the decay rate relative to Ke3 decays and
for the branching ratio agreed with the theoretical pre-
dictions of [4,5], respectively. A few years later, the KTeV
Collaboration [12] determined the relative branching ratio,
together with the photon spectrum, at percent-level sen-
sitivity. They found a result which is “significantly lower
than all published theoretical predictions”. Moreover, from
the measured photon energy distribution, two particular
combinations of the SD amplitudes were obtained, within
rather large uncertainties. Quite recently, new experimen-
tal results on Ke3γ with percent-level accuracy have been
presented by the NA48 [13] and by the KTeV [14] Collab-
orations, respectively.

The experimental situation has therefore become quite
promising and clearly justifies renewed interest in radia-
tive Ke3 decays. In this regard, particularly relevant top-
ics are the stability of IB with respect to the Ke3 form
factor parameterizations, the separation itself of the ra-
diative amplitude into IB and SD contributions and the
re-visitation the ChPT calculation of the SD component,
including in particular next-to-leading O(p6) corrections.
Moreover, this represents an opportunity to discuss, besides
the photon spectrum, also other differential distributions
that may help in the study of the SD terms in high statis-
tics experiments.

In the sequel, we limit our consideration to the Ke3γ

transition, since current experimental data with appropri-
ate statistics refer to this mode only. Specifically, in Sects. 2
and 3 we review the experimental situation and the exper-
imental observables, the kinematics, and the amplitude
definitions with particular emphasis on the separation into
IB and SD contributions. In Sect. 4 we present the ChPT
results for the SD amplitudes, notably the O(p6) correc-

tions for the axial amplitudes. In Sect. 5 we numerically
discuss the relative radiative branching ratio, while Sects. 6
and 7 are devoted to numerical estimates of the SD ampli-
tudes, the photon energy distribution and the comparison
with experimental results. Also, other kinds of differential
distributions are discussed there. Finally, Sect. 8 contains
a summary of the results, while details of the calculations
are collected in the appendices.

2 Experimental status and observables

As already mentioned, we concentrate on Ke3γ decays
where high statistics experimental data on the branching
ratio and photon energy spectrum have become available.
For a presentation of the experimental status in the other
channels, we refer the reader to the PDG listing [15].

Measuring the decay rate relative to Ke3 is much safer
than absolute measurements, as the former is free from un-
certainties related to experimental normalizations, calibra-
tions, and machine luminosity. Basically, an inclusive Ke3
sample of events is collected, all characterized by one lepton
and one pion of opposite charges emitted from a common
vertex, without any restriction on the number of emitted
photons. A radiative Ke3γ subsample is extracted by im-
posing additional criteria dictated by the apparatus and
the experimental conditions, in particular by the request
of having at least one hard photon in each of those events.

To achieve optimal identification of the candidate Ke3γ

events, kinematical cuts are applied to the radiative sample.
In particular, thresholds in the photon energy and in the
photon–electron opening angle are usually imposed; see,
e.g., [4]. Then, the experimental results generally concern
the relative branching ratio

R
(
Ecut

γ , θcut
eγ

)
=

Γ
(
Ke3γ , E∗

γ > Ecut
γ , θ∗

eγ > θcut
eγ

)
Γ (Ke3)

,

(2.1)
where E∗

γ and θ∗
eγ indicate the photon energy and the

photon–electron opening angle in the kaon rest frame, re-
spectively.

From the above, the measured value of R is determined
by the ratio of the number of events in the Ke3γ and Ke3
samples, each divided by the respective experimental ac-
ceptances. The available experimental results are displayed
in Table 1.

Table 1. Experimental values of R for the transition Ke3γ .
The first error is statistical, the second one systematic

Ref. Ecut
γ θcut

eγ events R × 102

[13] 30 MeV 20◦ 18977 0.964 ± 0.008 +0.011
−0.009

[14] 30 MeV 20◦ 4309 0.916 ± 0.017

[14] 10 MeV 0◦ 14221 4.942 ± 0.042 ± 0.046

[12] 30 MeV 20◦ 15463 0.908 ± 0.008 +0.013
−0.012

[11] 30 MeV 20◦ 1384 0.934 ± 0.036 +0.055
−0.039

[16] 15 MeV 0◦ 10 3.3 ± 2.0
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One may notice that the KTeV 04 result for R [14] with
angular cuts is based on a much smaller number of Ke3γ

events with respect to their previous determination [12],
yet the achieved uncertainty based on their more recent
data is comparable owing to a much reduced systematic un-
certainty.

As regards the photon energy distribution, one can in-
vestigate the spectrum with free normalization because
the essential features lie exclusively in the shape. Indeed,
structure-dependent emission should manifest itself in the
harder portion of the photon energy spectrum, via a modi-
fication of the pure IB spectrum which is controlled by the
Ke3 form factors. An attempt along these lines was made
by the KTeV 01 experiment [12], which used a simplified
decomposition of the structure-dependent amplitude, and
their analysis will be commented upon in the sequel. This is
the only experimental information on structure-dependent
emission currently available, as neither NA48 nor KTeV
have so far presented an analysis of this point based on the
more recent data.

As far as the perspectives of K±
e3γ measurements are

concerned that may complement the currently available
data for Ke3γ , new results on these transitions are expected
from the NA48 experiment [17]. In the more remote future,
substantially increased statistics for K±

l3γ decays should be
expected in connection with the construction of higher
intensity kaon beams, with accumulated samples of 106

(or more) candidate events [18].

3 The decay amplitude

In the following, we consider the decay

K0(p) → π−(p′) e+(pe) νe(pν) γ(q) [K0
e3γ ] (3.1)

and its charge conjugate mode. We disregard CP -violat-
ing contributions, and study the emission of a real pho-
ton (q2 = 0).

3.1 The matrix element

The transition matrix element has the form

T (K0
e3γ) =

GF√
2

e V ∗
us εµ(q)∗

×
[
(Vµν − Aµν) ū(pν) γν (1 − γ5) v(pe)

+
Fν

2peq
ū(pν) γν (1 − γ5) (me− �pe− �q) γµ v(pe)

]
.= εµ(q)∗Mµ. (3.2)

The relevant diagrams are displayed in Fig. 1. The first
term of (3.2) corresponds to diagram a, which includes
bremsstrahlung off the charged pion, while the second one
corresponds to the radiation off the positron, represented

νe

e+

π−

γK0
W

a) b)

Fig. 1. Diagrams describing K0
l3γ decay

by the diagram b. We have introduced the hadronic tensors
Vµν and Aµν ,

Iµν = i
∫

d4x eiqx 〈π−(p′)|T V em
µ (x) Ihad

ν (0)|K0(p)〉;

I = V, A, (3.3)

whereas Fµ is the Kl3 matrix element

Fµ = 〈π−(p′)|V had
µ (0)|K0(p)〉, (3.4)

with

V had
µ = s̄γµu, Ahad

µ = s̄γµγ5u,

V em
µ =

(
2ūu − d̄d − s̄s

)
/3. (3.5)

The tensors Vµν and Aµν satisfy the Ward identities

qµVµν = Fν ,

qµAµν = 0, (3.6)

which imply gauge invariance of the total amplitude (3.2),

qµMµ = 0. (3.7)

3.2 Inner bremsstrahlung, structure-dependent terms
and all that

Low’s theorem is employed in [3] to obtain the IB amplitude
for Kl3γ decays, written entirely in terms of the Kl3 form
factors and their derivatives. In this subsection we present
an alternative way of separating the amplitude into an IB
and a SD part that directly starts from the following two
requirements.
(1) In order to describe two different physical mechanisms,
the IB and SD amplitudes must be separately gauge in-
variant.
(2) The SD amplitude contains terms of order q and higher.

The second condition does not prevent the IB amplitude
from containing terms of order q and higher. Splitting the
amplitude under this less restrictive condition allows one to
put more terms into the IB part, still using only the non-
radiative matrix element in this part of the amplitude.
This has the advantage that one can make more precise
predictions for the decay process, as we will see below.

The splitting of the transition amplitude T into an IB
and a SD part requires a corresponding splitting of the
hadronic tensor Iµν . Consider first the axial correlator.
There are no contributions where the photon is emitted
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from the pion line. Therefore, Aµν is considered to be a
purely SD contribution. It can be written in the form [5]

Aµν = ASD
µν

= i εµνρσ (A1 p′ρqσ + A2 qρW σ)

+i εµλρσ p′λqρW σ (A3 Wν + A4 p′
ν) , (3.8)

where Wµ = (p − p′ − q)µ. (We use the convention ε0123 =
+1.) The amplitude is manifestly of order q and higher,
because the Ai are non-singular at zero photon energy.
The Lorentz invariant components Ai depend on three
independent scalar variables that can be built from p, p′,
and q – we come back on this in the following paragraph.

The decomposition of the vector correlator reads

Vµν = V IB
µν + V SD

µν , (3.9)

where the IB piece is chosen such that

qµV IB
µν = Fν(t), (3.10)

as a result of which we have

qµV SD
µν = 0. (3.11)

The structure-dependent part of the decay amplitude T
in (3.2) is defined to be

T SD =
GF√

2
e V ∗

us εµ(q)∗ (V SD
µν − ASD

µν

)
×ū(pν) γν (1 − γ5) v(pl), (3.12)

whereas the bremsstrahlung part is T IB = T − T SD.
It remains to explicitly construct the decomposition

(3.9). In order not to interrupt the argument, we refer the
interested reader to Appendix E and simply display here
the result,

V IB
µν =

p′
µ

p′q
(
2pνf+(W 2) − Wνf2(W 2)

)
+

Wµ

qW
(2(p − q)ν�f+ − Wν�f2) (3.13)

+gµν (2�f+ − f2(t)) ,

�fi = fi(t) − fi(W 2), i = +, 2, (3.14)

where f+, f2 are the form factors (3.4)

Fµ = 2pµf+(t) + (p′ − p)µf2(t), t = (p − p′)2. (3.15)

We use the form factors f+, f2 instead of the usual f+,
f− = f+ − f2 ones for easier comparison with the work
of [3].

The IB part derived in [3] differs from the one used
here through terms of order q. It can be obtained from V IB

µν

by subtracting all terms of order q and higher from the
latter, and merging them into the SD part of the ampli-
tude. Because the terms to be subtracted can be expressed
through the form factors f+, f2 and their derivatives, we

believe that it does not make much sense to perform this
purification of the IB part, and we will mostly stick with
the convention (3.13). While comparing with the KTeV
result [12], we will have the occasion to compare (3.13)
with the conventional decompositions [3] in more detail in
Sect. 6.3.1

Let us shortly discuss the salient features of the IB
term (3.13). First, it satisfies the Ward identity (3.10). Sec-
ond, it contains all infrared singular pieces proportional to
1/p′q. With this we mean the following. The residue of the
singularity is a non-trivial function of the momenta p, p′, q.
The decomposition (3.13) takes into account all singulari-
ties at p′q = 0, in contrast to the standard treatment [3],
which considers e.g. a term like (qW )2/p′q to be of order
q, to be relegated to the SD part of the amplitude.

It is useful to decompose also the SD part of the vector
amplitude into a set of gauge invariant tensors. In the
following, we often use the basis proposed in [20],

V SD
µν = V1

(
p′

µqν − p′q gµν

)
+ V2 (Wµqν − qWgµν)

+V3
(
qWp′

µWν − p′q WµWν

)
+V4

(
qWp′

µp′
ν − p′q Wµp′

ν

)
. (3.16)

The Lorentz invariant amplitudes Vi again depend on the
3 scalars that can be formed from p, p′, and q.

3.3 Kinematics

It remains to shortly recall the kinematics of this decay,
and we begin with the Lorentz invariant amplitudes Ai, Vi.
As already mentioned, these are functions of three scalar
variables that we often take to be

s = (q + p′)2, t = (p − p′)2, u = (p − q)2. (3.17)

These variables are useful in the discussion of the analytic
properties of Vi, Ai. In (3.3), the variables s, t, u can assume
any value, whereas the physical region in Ke3γ decays can
be represented as follows. For fixed W 2, the variables s, t,
and u vary in

W 2 ≤ t ≤ (MK − Mπ)2,

s− ≤ s ≤ s+,

s± = M2
π − 1

2t
(t + M2

π − M2
K)(t − W 2)

± 1
2t

λ1/2(t, M2
K , M2

π)λ1/2(t, 0, W 2),

s + t + u = M2
K + M2

π + W 2, (3.18)

where

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz). (3.19)

1 Our separation into IB and SD contributions is very close in
spirit to the notion of generalized bremsstrahlung as developed
in [19].



J. Gasser et al.: Radiative Ke3 decays revisited 209

Varying the invariant mass squared W 2 of the lepton pair
in the interval

m2
e ≤ W 2 ≤ (MK − Mπ)2 (3.20)

generates the region covered by s, t, u in Kl3γ decays. In
Sect. 4.2, where the analytic properties of the amplitudes
Ai, Vi are discussed, we display the region (3.18) in the
Mandelstam plane.

Instead of s, t, u, we also use

pq/MK = E∗
γ , pp′/MK = E∗

π, W 2 = (pl + pν)2,
(3.21)

where E∗
γ , E∗

π are the photon and the pion energy in the
kaon rest frame. This set is useful when discussing partial
decay widths.

In the case of four body decays we have five independent
variables, thus two more variables are needed to describe
fully the kinematics of Kl3γ decays. We choose

ppe/MK = E∗
e , x = peq/M

2
K , (3.22)

where E∗
e is the positron energy in the kaon rest frame.

The dimensionless variable x is related to the angle θ∗
eγ

between the photon and the positron:

xM2
K = E∗

γ

(
E∗

e −
√

E∗
e
2 − m2

e cos θ∗
eγ

)
. (3.23)

The total decay rate is given by

Γ (K0 → π−e+νγ) (3.24)

=
1

2MK(2π)8

∫
dLIPS(p; p′, pe, pν , q)

∑
spins

|T |2 ,

where T is the amplitude in (3.2), and we denote the
Lorentz invariant phase space element for the Kl3γ process
by dLIPS(p; p′, pe, pν , q).2 The square of the matrix ele-
ment (3.2), summed over photon and lepton polarizations,
is a bilinear form in the invariant amplitudes Vi, Ai, f+
and f2. Performing the traces over the spins, we work with
massless spinors, as a result of which the form factors A3, V3
and f2 drop out in the final expressions. [The electron mass
cannot be set to zero everywhere, because the IB part of
the transition amplitude contains mass singularities, gen-
erated by the diagram Fig. 1b.] In Appendix B, we display
the explicit result for

∑
spins |T |2, in particular the T -odd

terms that are generated by the imaginary parts of the
structure functions, and comment on the relation to the
width of KL.

2 For the decay of a particle of momentum p into n particles
of momenta p1, . . . , pn, one has

dLIPS(p; p1, . . . , pn) = δ4

(
p −

n∑
i=1

pi

)
n∏

k=1

d3pk

2p0
k

.

4 Analytical results from ChPT

While Low’s theorem furnishes a recipe to evaluate the
terms of order 1/q and q0 of an amplitude associated with
a general radiative process, it does not give any insight into
the terms of order q and higher, that is the SD part. A con-
venient tool to derive expressions for the SD amplitude is
ChPT. For the axial part, ChPT directly generates the cor-
responding amplitude in a series expansion in the momenta,
the leading contribution is generated by the Wess-Zumino-
Witten (WZW) term [10]. As for the vector amplitude, the
chiral expansion contains both IB and SD terms, hence if
one simultaneously evaluates the Kl3 matrix element, the
decomposition (3.13) leads to the chiral expansion of the
SD term.

4.1 ChPT results at order p4

In [5], the chiral expansion was carried out up to O(p4) for
the neutral and for the charged decay modes. [A tree-level
calculation up to this order without the loop contributions
was performed in [21].] We do not describe the calculation
here and refer the interested reader to the original article.
The result for the SD terms is as follows. For the axial
amplitude, one has

A2 = − 1
8π2F 2 , A1 = A3 = A4 = 0 [O(p4)]. (4.1)

F is the pion decay constant in the chiral limit.3 We display
the result for the vector amplitude V SD

µν in terms of the
Lorentz invariant form factors Vi,

V1 =
√

2 Ĩ2,

V2 =
√

2
qW

(
Ĩ1 − p′q Ĩ2 +

√
2�f+

)
,

V3 =
√

2
qW

(
Ĩ3 − f̃+

2 (W 2)
)

,

V4 = 0 [O(p4)]. (4.2)

The integrals Ĩi, f̃+
2 are defined as follows. In [5], the one-

loop expression for Vµν in the charged decay mode K+
l3γ

is defined in terms of integrals Ii, f+
i , explicitly displayed

there. The quantities Ĩi, f̃+
2 are obtained from Ii, f+

2 by
(1) replacing the arguments (p, p′) by −(p′, p) in the Ii ;
(2) inserting the appropriate coefficients cI

i for K0
l3γ listed

in Table 10 of that reference.
Note in addition that �f+ in (4.2) refers to the chiral

one-loop representation of this quantity.
It turns out that the form factors Vi are nearly con-

stant over the physical phase space. This is due to the
fact that in the vicinity of the physical phase space, there
are no singularities at this order in the chiral expansion.

3 Usually, the meson decay constant in the SU(3) chiral limit
is denoted by F0. We refrain from following this convention in
order to slightly ease the notation.
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This fact allows one to derive expressions for the SD parts
that are considerably simpler than the full ones, yet still
precise enough for our purpose. In a first step, we expand
these amplitudes in powers of the photon momentum q and
keep only the leading order term. This amounts to setting
s = M2

π , u = M2
K , as a result of which the Vi become func-

tions of t alone. It turns out that all loop integrals can be
expressed in terms of the standard one-loop integral J̄(t).
The resulting expressions are displayed in Appendix C. An
even more drastic simplification results when one further-
more sets t = 0 in the simplified formulae. The result reads

V1 = − 8
F 2 L̄9 − (1 − x)−2

32π2F 2

{
1
3
(
53 − 25x + 2x2)

+
(
1 + x − x2 + x3) log x

2(1 − x)

− (
127 − 93x + 21x2 − x3) log y

2(1 − x)

}
+ O(q, t),

V2 =
4

F 2

(
L̄9 + L̄10

)
+

(1 + x)(1 − x)−2

64π2F 2

{
1 + x +

2x log x

1 − x

}
− (1 − x)−3

32π2F 2

{
166
3

(9 − 4x) + (77 − x)
x2

3

+ x(3 + 2x)
log x

1 − x
− 9(12 − x)(4 − x)2

log y

1 − x

}
+O(q, t),

V3 = − (1 − x)−4

32π2F 2M2
K

{
2611

3
− 13x(34 − 5x) − 4

3
x3

+x(2 + 3x + x2)
log x

1 − x

− 27(7 − x)(4 − x)2
log y

1 − x

}
+ O(q, t). (4.3)

Here, x = M2
π/M2

K , y = M2
η /M2

K . Furthermore, it is un-
derstood that M2

η is related to M2
K , M2

π through the Gell-
Mann–Okubo relation.

4.2 ChPT results at order p6

There are two main reasons to consider O(p6) corrections
to the structure-dependent terms as described in the pre-
vious subsection.
(1) As the structure-dependent terms vanish at tree level in
the chiral expansion, the one-loop or O(p4) predictions are
only the leading order results for these amplitudes. Sublead-
ing corrections are often sizable in chiral SU(3), therefore
it is mandatory to investigate O(p6) terms in order to be
sure to control the size of the structure-dependent terms.
Furthermore, several of the structure functions vanish at
leading (one-loop) order (V4, A1, A3, A4) or nearly so in
the sense that they do not allow for natural-size counter-
terms (V3), so the size of corrections to these is completely

unknown from the one-loop results.
(2) At O(p4), all structure functions are real in the phys-
ical region, and the cuts in these functions lie far outside
the kinematically allowed range. This is the reason why
they are so smooth and can be approximated to such high
accuracy by simple polynomials. However, this changes at
O(p6), as will be seen below.

For the following discussion, we again use the Mandel-
stam variables s, t, u. The lowest-lying cuts for the structure
functions in terms of these three variables are as follows.
(1) For the weak vector current, they start at sthr = 9M2

π ,
tthr = (MK + Mπ)2, uthr = (MK + 2Mπ)2, respectively.
Only the t-channel cut exists at O(p4) as the other two
require three-particle intermediate states and therefore oc-
cur only at two-loop order.
(2) For the weak axial current, cuts start at sthr = 4M2

π ,
tthr = (MK +Mπ)2, uthr = (MK +Mπ)2, respectively. All
these occur at one-loop order, but are suppressed to O(p6)
as they require an anomalous vertex.

These cuts are displayed graphically in Fig. 2, where we
have drawn them in the Mandelstam plane together with

u = 0

t = 0

s = 0 s = 0

2t = (M  +M  )πK

s = 9M 2π
2s = 4M π

2
πu = (M  +M  )Ku = 0

Fig. 2. Cuts in the complex plane for the vector (left panel) and
axial (right panel) amplitudes for fixed W 2 = m2

e. The arrows
indicate the part of the plane where the decay amplitude is
complex, starting from the lowest cuts indicated by the full
lines. The limits of physical phase space are also shown (thick
solid line)

K0
Vν

had

Vµ
em

K

π

π

π−

K0

c)

K0

Aν
had Vµ

em

π

π
π−

K0

a)
K0

Vν
had Vµ

em

π
π

π
π−

K0

b)

Fig. 3. Feynman diagrams with cuts for a) s > 4M2
π , b) s >

9M2
π , c) t > (MK +Mπ)2, respectively. The filled vertex denotes

a contribution from the anomalous Lagrangian at order p4. The
first two diagrams provide the structure functions with imagi-
nary parts in the physical region, while the last one generates
the only cut present in the amplitudes at O(p4)
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the allowed phase space for fixed (and minimal) W 2 = m2
e,

which corresponds to the maximal range in s, t, u. While the
t- and u-channel cuts lie far outside the physical region, we
note that the s-channel cuts overlap with it (precisely: for
W 2 < (MK −3Mπ)2 in the vector and W 2 < (MK −2Mπ)2
in the axial case), such that at least some of the structure
functions become complex at O(p6).

The diagrams with cuts responsible for imaginary parts
in the physical region are displayed in Fig. 3, together with
one typical diagram for the t-channel cut appearing at
O(p4). Due to the smallness of phase space for the three-
pion intermediate state, we expect the effect of the cut in
the vector structure functions to be tiny.

For the above considerations, we have regarded W 2 as
a fixed “mass squared” of the lepton-neutrino pair, which
is of course not true. There are additional cuts in W 2, the
lowest one starting at W 2 = (MK + Mπ)2 present at one
loop, but sufficiently far outside the physical region, plus
a pole at W 2 = M2

K that however only appears in the
structure function A3. The pole at s = M2

π defines the
bremsstrahlung part and is not present in the structure-
dependent terms as defined by our convention.

4.2.1 Complete order p6 corrections to the axial amplitudes

We have calculated the complete O(p6) corrections to the
axial structure functions A1, A2, and A4. A3 is always sup-
pressed by a factor of m2

l and is therefore disregarded in
the context of the electron channel. We find the follow-
ing structures:

A1 = − 1
4π2FπFK

{S1(s) + T1(t) + U1(u) + X1}, (4.4)

A2 = − 1
8π2FπFK

{1 + S2(s) + T2(t) + U2(u) + X2},

(4.5)

A4 = − C4A

FπFK
. (4.6)

The explicit forms for the various loop functions as well
as the combinations of low-energy constants entering the
expressions (4.4)–(4.6) can be found in Appendix D. We
remark that it is strictly necessary to differentiate between
Fπ and FK at this order only for A2. The normalization
was chosen this way such that any dependence on the low-
energy constants L4, L5 vanishes in the final result.

We furthermore note that only A1 has a contribution
from the s-channel cut and therefore becomes complex in
parts of the physical region at this order, while S2(s) is a
simple polynomial. It turns out, though, that also in S1(s)
the standard two-point loop function J̄ππ(s) from the two-
pion intermediate state comes with a prefactor of (s−4M2

π)
such that the cusp in the real part is smoothed out. This
is due to the fact that the ππ → πγ rescattering has to
be a P -wave and is therefore suppressed at threshold. For
the same reason, the imaginary part also rises very slowly
above threshold: as the leading and next-to-leading order

amplitudes in the chiral expansion are real, it is certainly
negligible in the squared matrix element at our accuracy.

We conclude that even for the axial structure func-
tions, the impact of the various cuts on the behavior in the
physical region is rather weak.

4.2.2 Order p6 corrections to the vector amplitudes

A complete evaluation of the vector amplitudes at order
p6 requires a full two-loop calculation, which is beyond
the scope of this article. A less ambitious work consists in
the determination of the leading chiral logarithms at two-
loop order [22]. As a first step in this direction, we have
explicitly calculated the contributions of the form Li×Lj

at order p6. We find that these can all be absorbed into a
renormalization of the couplings at order p4, according to
F 2 → FπFK . This is strictly analogous to the observation
that the dependence on L4, L5 for the axial terms can be
absorbed into such a renormalization. We will make use of
this fact in Sect. 6, where we provide numerical values for
the SD terms. In addition, we will give a rough estimate
of the contributions at order p6, and defer an evaluation
of the leading logarithms to a later publication [23].

5 The ratio R

A particularly useful quantity to consider for the examina-
tion of Ke3γ decays is the ratio R defined in (2.1), rather
than the absolute width for the Ke3γ-channel or the branch-
ing ratio thereof. This is desirable both from the experi-
mental and the theoretical point of view for rather similar
reasons: both experimentally and theoretically, certain nor-
malization factors cancel in the ratio (to a large extent),
and hence the uncertainties ensuing thereof are avoided. To
present the situation in a more transparent way, we shall
initially neglect all possible complications ensuing from ra-
diative corrections or isospin breaking, and shall discuss
these afterwards in Sect. 5.4. In order to remind the reader
of this simplification, we shall denote R in the absence of
real and virtual photon corrections by R in the following:

α−1R =
[
α−1R

]
α=0 . (5.1)

We may decompose R according to R = RIB + RSD in
the following sense: RIB is understood to be R in the limit
where all structure-dependent terms are omitted, while we
may then define RSD = R − RIB, such that RSD contains
in particular also interference terms of bremsstrahlung and
structure-dependent terms.

We begin by deriving a simple expression for R. Starting
from (3.24), we may define a quantity SM by

Γ (Ke3γ) =
1

2MK(2π)8

∫
dLIPS

∑
spins

|T |2

.=
8αM5

KG2
F|Vus|2

(2π)7
f+(0)2

∫
dLIPS SM. (5.2)
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The phase space integral
∫

dLIPS SM so defined is dimen-
sionless and free of (electroweak) coupling constants. For
the bremsstrahlung part, also f+(0)2 factors out naturally,
such that all form factors appearing in SM are the normal-
ized form factors f̄+(t) = f+(t)/f+(0). The non-radiative
width can be written as

Γ (Ke3) =
∫

dy dz ρ(y, z),

ρ(y, z) =
M5

KG2
F|Vus|2

128π3 f+(0)2A(y, z)f̄+(t)2, (5.3)

where y = 2ppe/M
2
K , z = 2pp′/M2

K , and

A(y, z) = 4(z + y − 1)(1 − y) + re(4y + 3z − 3)

−4rπ + re(rπ − re), (5.4)

with re = m2
e/M

2
K , rπ = M2

π/M2
K . We therefore find for

R the following simple expression,

R =
8α

π4

∫
dLIPS SM∫

dy dz A(y, z)f̄+(t)2
, (5.5)

in which all factors GF, Vus, f+(0), and MK have can-
celed. [For the relation between Ke3γ and K0

e3γ decays, see
Appendix B.]

5.1 Phase space integrals

Assuming

f̄+(t) = 1 + λ+
t

M2
π

+ λ′′
+

t2

M4
π

, (5.6)

one may expand the integral in the denominator accord-
ing to

I =
∫

dy dz A(y, z)f̄+(t)2 (5.7)

= a0 + a1λ+ + a2
(
λ2

+ + 2λ′′
+
)

+ a3λ+λ′′
+ + a4λ

′′
+

2
.

The numerical values for the coefficients a0−4 as found
by performing the relevant phase space integrals are given
in Table 2. We remark that although we neglect isospin
breaking effects in this subsection, we have employed the
physical kaon and pion masses [Appendix A].

Similarly, one can also calculate the dependence of the
numerator on the form factor parameters λ+, λ′′

+. In an
analogous manner to (5.7) we write

Iγ =
∫

dLIPS SM (5.8)

Table 2. Coefficients for the Ke3 phase space integral

a0 a1 a2 a3 a4

0.09390 0.3245 0.4485 3.092 6.073

Table 3. Coefficients for the Ke3γ phase space integral for
Ecut

γ = 30 MeV, θcut
eγ = 20◦. The errors for bSD

i are p6 estimates

bIB
0 bIB

1 b2 bIB
3 b4 b5

1.509 5.23 6.92 14.71 47.6 92.3

bSD
0 bSD

1 bSD
3

−0.011 ± 0.003 −0.02 ± 0.01 −0.06 ± 0.02

= b0 + b1λ+ + b2λ
2
+ + b3λ

′′
+ + b4λ+λ′′

+ + b5λ
′′
+

2
.

The coefficients b0, b1, and b3 have contributions also from
the structure-dependent terms, such that we decompose
them again according to bi = bIB

i + bSD
i . b2, b4, and b5 have

no structure-dependent part. In our framework, the brems-
strahlung amplitude is expressed in terms of a completely
general (phenomenological) form factor f+(t), while the
coefficients bSD

i can be chirally expanded and receive their
leading contribution at O(p4). We point out that all the
coefficients bi depend on the experimental cuts Ecut

γ , θcut
eγ ,

we however suppress this dependence in our notation.
Wemention that, in principle, the inclusion of structure-

dependent terms re-introduces a dependence on f+(0) by
which these terms have to be divided in order to arrive
at (5.5). However, the uncertainty in the structure-depen-
dent terms themselves coming from higher-order (O(p6))
contributions is at least one order of magnitude larger than
the uncertainty in f+(0), so we do not have to worry about
a very precise value for the latter. For our purposes, we
have used the value predicted (parameter-free) in one-loop
ChPT, f+(0) = 0.977 [24].

The values for the coefficients bi can only be found nu-
merically in this case. Our findings for the “standard cuts”
Ecut

γ = 30 MeV, θcut
eγ = 20◦ are collected in Table 3. For

the values of the low-energy constants see Appendix A. We
neglect any variation in these constants as we include esti-
mates of the uncertainties stemming from the O(p6) con-
tributions (see Sect. 4.2) that generously cover the range of
values for Lr

9, Lr
10. These uncertainties are quoted as errors

for the bSD
i in Table 3. We describe the precise procedure

how we estimate these ranges numerically in Sect. 6.2 and
only note for now that the possible corrections are roughly
30%, which one would naively expect for chiral SU(3).

The central observation here is that structure-depen-
dent terms as predicted by ChPT at one loop contribute
as little as 1% to each of the parameters in Table 3 and
therefore to the total radiative decay rate.

5.2 Form factor dependence of R
We are now in the position to give a numerical prediction for
R that depends solely on λ̄+ = λ+/λc

+ and λ̄′′
+ = λ′′

+/(λc
+)2.

We choose to normalize all parameters by the central value
λc

+ = 0.0294, see Appendix A, in order to expand in terms
of quantities of natural order of magnitude. Note that λc

+
2

is a natural scale for λ′′
+ that one would obtain e.g. from

K∗ dominance.
The numerical prediction is obtained from (5.5), (5.7)

and (5.8). In order to make the form factor dependence
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Table 4. Coefficients for the λ̄+, λ̄′′
+ dependence of RIB, R.

The errors for the ci are p6 estimates. All numbers are given
for the standard cuts

RIB(1, 0) × 102 cIB
1 × 103 cIB

2 × 104 cIB
3 × 104

0.963 −0.0 −1.5 1.2

R(1, 0) × 102 c1 × 103 c2 × 104 c3 × 104

0.957 ± 0.002 0.3 ± 0.2 −1.6 ± 0.2 1.5 ± 0.2

more transparent, though, we expand R according to

R (
λ̄+, λ̄′′

+
)

= R(1, 0) (5.9)

×{1 + c1
(
λ̄+ − 1

)
+ c2

(
λ̄+ − 1

)2 + c3 λ̄′′
+ + . . .},

where we only retain the leading (and most important)
terms.

We begin again by considering bremsstrahlung only.
The numerical results are given in Table 4, again for the
standard cuts. They demonstrate that RIB is extremely
insensitive to the details of the Ke3 form factor due to a
large cancellation of the λ+ (λ′′

+) dependence in numerator
and denominator of RIB.4 Furthermore, we note that a tree-
level calculation of R in ChPT would amount to RIB (as
there are no structure-dependent terms) with λ̄+ = λ̄′′

+ = 0
(point-like form factors). Numerically, one finds Rtree =
0.963 × 10−2, which is even identical to the above result
in all digits displayed.

Inclusion of the structure-dependent terms is straight-
forward from the results given in Table 3, we show the
numerical results for the complete (IB+SD) coefficients
also in Table 4. Perpetuating what was done in Table 3,
we again quote errors on all parameters as induced by the
estimated O(p6) uncertainties.

We repeat here the observation made in the previous
subsection that structure-dependent terms contribute as
little as 1% to the ratio R. In view of the above remark
about R at tree level, the complete one-loop correction
to R is in fact about 1%. Or, to put it even differently, a
prediction of the radiative decay rate based solely on inner
bremsstrahlung is expected to have a precision of about
1%. The parameters ci are shifted more visibly due to the
fine cancellation between numerator and denominator of
R, but they remain tiny and do not change the conclusion
that the form factor dependence of R is entirely negligible.

This is an appropriate place to compare our findings
with the calculation in [5]. We note that there, the branch-
ing ratio BR(Ke3γ) was determined from the chiral am-
plitude at order p4, with Ecut

γ = 30 MeV, θcut
eγ = 20◦. As

is clear from the above, a cancellation of the momentum
dependence of the form factors does not occur in this case.
In order to compare with the present calculation, we use
the formula (5.5) and note that the value for Lr

9 used in [5]
corresponds to λ+ = 0.032. We have repeated the calcula-
tion with the matrix element at order p4 provided in [5].
By use of (5.5) and (5.7), we find R = 0.96 × 10−2, in

4 The weaker λ+ dependence of R was already hinted at in
a footnote in [4].

Table 5. Coefficients for the λ̄+, λ̄′′
+ dependence of RIB with

variation of the experimental cuts on Ecut
γ , θcut

eγ

Ecut
γ θcut

eγ RIB(1, 0)×102 cIB
1 ×103 cIB

2 ×104 cIB
3 ×104

20 MeV 20◦ 1.297 −2.1 −0.4 −2.0

30 MeV 20◦ 0.963 −0.0 −1.5 1.2

40 MeV 20◦ 0.743 2.1 −2.6 4.5

30 MeV 10◦ 1.254 1.7 −1.9 3.3

30 MeV 20◦ 0.963 −0.0 −1.5 1.2

30 MeV 30◦ 0.790 −1.6 −1.1 −0.7

perfect agreement with the value displayed in the fourth
row in Table 4.

The important conclusion is that imprecise knowledge
of the Ke3 form factor does not preclude a precise prediction
of R.

5.3 Dependence on the experimental cuts

The near-complete cancellation of all form factor depen-
dence in R suggests the question whether this might be
accidental due to the specific cuts chosen for the radia-
tive decay width. Here, we want to briefly analyze how the
above findings change when we vary the cuts on E∗

γ and
θ∗

eγ . We restrict ourselves to the bremsstrahlung part of the
radiative width and R. The most important information
on the expansion of R according to (5.9) is collected in
Table 5. We find that the coefficients cIB

i do indeed vary
considerably for different cuts, but always stay “small”,
cIB
1 = O(10−3), cIB

2/3 = O(10−4). The suppression of cIB
1

far beyond 10−3 for the standard cuts turns out to be ac-
cidental, however. Still, with |λ̄+ − 1| � 0.1, |λ̄′′

+| ∼ 1, we
find that the Ke3 form factor affects R at the level of 10−4.

We should remark here on the latest results for these
form factor parameters published by the KTeV Collabora-
tion [25]. For the first time, they find significant statistical
evidence for a non-zero quadratic term in f+(t), together
with a sizable reduction of λ+. Converted to our conven-
tions, the combination of their quadratic fits to Ke3 and
Kµ3 corresponds to λ̄+ = 0.70 ± 0.06, λ̄′′

+ = 1.85 ± 0.40.5
While the deviation for the two individual parameters is
quite sizable, we find from Table 5 that a simultaneous
reduction of λ̄+ and an enhancement in λ̄′′

+ still only mod-
ify R at the order of a few parts times 10−4 at best. Our
finding that R is independent of the details of f+(t) to a
very large extent therefore remains valid.

5.4 Isospin breaking

We have seen above that the ratio R can be predicted to
an amazingly good precision of less than 1%, using ChPT

5 Similar trends were already noted in the theoretical fits
in [26]. Note however the latest experimental results from
NA48 [27], where a free quadratic fit leads to λ̄+ = 0.95±0.08,
λ̄′′

+ = 0.23±0.52, completely consistent with our central values.
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Table 6. Coefficients for the Ke3 phase space integral, including
corrections of O(α, mu − md). The numbers for a1 to a4 are
taken from [28]. For a0, see main text

a0 a1 a2 a3 a4

0.09412 0.3241 0.4475 3.080 6.042

to one loop for the structure-dependent terms plus a rough
estimate of the size of higher-order corrections. At this level
of precision, isospin breaking corrections – generated by
real and virtual photons, and by mu − md �= 0 – become
relevant, and we discuss these here.

As soon as one includes virtual photon corrections, one
also has to take care of additional soft-photon radiation in
order to obtain an infrared finite quantity, and we there-
fore clarify the precise prescription as to what is meant by
the numerator and denominator of the ratio R in (2.1). In
accord with the experimental situation [12,13], the denom-
inator denotes the inclusive width for KL → π±e∓νe(nγ),
where (nγ) denotes any number of photons of arbitrary en-
ergy. The numerator is specified in an analogous manner:
experimental measurements of Ke3γ require detection of at
least one hard (E∗

γ > Ecut
γ , θ∗

eγ > θcut
eγ ) photon in the final

state, plus an arbitrary number of additional soft or hard
photons. A full calculation of the O(α2) contributions in
R is beyond the scope of this work. Instead, we identify
some partial contributions to it and give an estimate of
the remainder.

Radiative corrections have been evaluated for Ke3
in [28–30]. Effects from the quark mass difference mu −md

have been in addition taken into account in [28]. We note
the following from that investigation:
(1) One particularly pronounced effect is the electroweak
correction factor to the Fermi constant, G2

F → SEWG2
F,

which contains a large short distance enhancement fac-
tor [28,31] ∝ log MZ/Mρ such that SEW − 1 ≈ 2.2× 10−2.
This factor, however, is universal in the sense that it applies
identically also to the radiative rate and therefore cancels
in R.
(2) There are electromagnetic vertex corrections and mu −
md effects that are collected in a shift in f+(0), which can
still be factored out as in (5.3). The remaining corrections
have been incorporated in an expansion of the integral I in
terms of Ke3 form factor parameters according to (5.7). The
authors of [28] have calculated the values for all the param-
eters a0−4 including corrections of O(e2p2, (mu − md)p2).
Their results are collected in Table 6.6 In [28], the cor-
rections from real photon emission were treated slightly
differently from what is done here: while there was no up-
per cut on the photon energy, the remaining phase space
integration of pion and electron momenta was restricted
to the kinematics compatible with Ke3 phase space. In or-
der to agree with the experimental situation for the case
at hand, we have removed this cut, and have modified a0
accordingly, augmenting it by 0.57%.

6 We are grateful to the authors of [28] for providing us with
the values for a3 and a4 which are not included in the publi-
cation.

(3) It remains to estimate isospin breaking effects in the
numerator of R. A source of potentially large radiative
corrections are electron mass singularities. Because the ob-
served photon is hard and emitted with an angle θ∗

eγ > 20◦
with respect to the electron, we expect that, according
to the KLN [32] theorem, these may be absorbed into a
running electromagnetic coupling constant. In the present
case, the initial state is neutral – we therefore evaluate
the running coupling at the pion mass, rather than the
kaon mass, α → α

(
1 + α

3π log(M2
π/m2

e)
)
. [We stick to cor-

rections of relative order α here. Evaluating the coupling
instead at the kaon mass affects the final result for R by
about two permille. Up to the number of digits displayed
below, the final number remains unchanged.] We denote
the remaining relative corrections by ∆em. We expect them
to be small, of the order α/π � 2.3 × 10−3. To be on the
safe side, we increase this estimate by a factor five and take
∆em = 0.01.
(4) Finally, we note that part of the running coupling is
absorbed into f+(0) that contains, in the convention of [28],
an electron mass singularity as well. We factorize this piece
as before, such that the effect of the mass singularity in
the numerator is reduced, α → α

(
1 + α

12π log(M2
π/m2

e)
)
.

As for isospin breaking through mu − md, we expect the
effects that cannot be absorbed into f+(0) to be tiny, and
we neglect them here.

5.5 Final result for R

Compared to results quoted in Table 4, our prediction is
therefore modified by isospin breaking corrections in the
following manner: the central value is reduced by 0.2% due
to corrections in the denominator. We use in the numera-
tor the running coupling as discussed above, and add an
uncertainty of ±∆em. We finally find

R = (0.96 ± 0.01) × 10−2 (5.10)

as our prediction. This may be compared to RIB = 0.963×
10−2 for bremsstrahlung only, without radiative correc-
tions. Both R and, as a point of reference, RIB are displayed
in Fig. 4, together with experimental results from [11–14].
Note that the corresponding Fig. 4 in [12] does not properly
represent the theoretical result obtained in ChPT in [5]: in
that reference, the ratio Γ (Ke3γ)/Γ (KL) was calculated,
and an error analysis was not performed. In addition, the
other two theoretical works [3,4] – displayed with an error
bar in that figure – do also not contain an error estimate.

We conclude with the observation that the smallness of
structure-dependent contributions in R precludes a direct
determination of (hadronic) structure effects from R alone.
In order to extract such effects from experiment, one has
to resort to differential distributions, which we will discuss
in Sect. 7.
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Fig. 4.Our prediction for R (dubbed “IB+SD”) and RIB (“IB”)
in comparison with experimental results for R from NA31 [11],
KTeV 01 [12], KTeV 04 [14], and NA48 [13]. Note that RIB

does not contain radiative corrections. All values refer to the
“standard cuts” Ecut

γ = 30 MeV, θcut
eγ = 20◦

6 Structure-dependent terms:
Numerical results from ChPT

In the ratio R, the effect of the structure-dependent terms
is tiny. On the other hand, in [12], the KTeV Collaboration
attempted to extract two of the structure-dependent terms
from the E∗

γ spectrum. Their result encourages us to take up
this issue here, in particular so in view of its connection with
the effective theory of the standard model. The remaining
part of this article is devoted to this issue.

The structure-dependent terms are characterized by the
six amplitudes Vi, Ai. The effect of V3, A3 is suppressed
by powers of the electron mass in the decay rate – these
amplitudes are only needed for a comparison with the basis
used in [12]. The Vi, Ai are in general complicated functions
of the variables s, t, and u. At leading order in ChPT, they
are however real, vary little over physical phase space, and
maywell be approximated by real constants. It thus appears
that in this approximation, the amplitudes can directly be
confronted with the KTeV analysis [12]. The reason why
this is not the case is the following. As we have mentioned
in Sect. 3, the IB terms used in the present work differ
from the ones in [3] [and used by the KTeV Collaboration],
and therefore the SD terms differ. In addition, we use a
different set of tensors to decompose the SD terms into
Lorentz invariant amplitudes. We have discussed before
why we believe that the decomposition into IB and SD
terms used here is more appropriate in Ke3γ than the one
originally proposed in [3]. As for the choice of a tensor basis,
the one used here has the advantage that it automatically
singles out the two amplitudes whose effect in the rate is
suppressed by powers of the electron mass. The basis used
in [3,12] does not have this property, as a result of which the
interpretation of the various SD terms is somehow involved,
see below.

We present the result of our analysis in the following
manner. First, we discuss numerical results for Vi, Ai at
leading and next-to-leading order in ChPT. We then detail

the decomposition of the hadronic tensors Vµν , Aµν used
in [12], and translate our result into the Lorentz invariant
SD amplitudes used there.

6.1 Numerical evaluation of the O(p4) terms

An important assumption of the analysis of structure-
dependent terms in [12] is that these are real and constant
– which is not really true. Let us therefore investigate in
what sense real and constant structure functions can be
taken as reasonable approximations.

Whereas the leading contributions to the Vi, Ai are
real, imaginary parts develop at higher orders in the chiral
expansion. It is shown in Appendix B that their effect is
suppressed in the physical quantities considered in this
work. More precisely, imaginary parts occur only through
contributions quadratic in the SD terms and are therefore
completely negligible here. Concerning the use of constant
form factors, we have already mentioned that the leading
contribution to the SD terms indeed is very slowly varying
over physical phase space. To quantify this statement, we
average the real part of the ChPT structure functions,
i.e., integrate over phase space and divide by the phase
space volume. We quote the standard deviation for this
average in order to quantify how sensible the assumption
of the functions being constant is. We use the notation 〈Vi〉
for the result of this averaging procedure, and quote the
numbers in units of the kaon mass.

The numerical results for the structure functions Vi, Ai

at order p4 are collected in the first column of Tables 7 and
8, at F 2 = FπFK . [Like for the analysis of R in the previous
section, we use the central values for Lr

9, Lr
10 as displayed

in Appendix A and neglect their uncertainties, which are
generously taken into account through the uncertainties
that we will attach to higher-order terms.] The axial terms
have only tree-level contributions at this order and are
strictly constant. As for the vector terms, the variation in
the Vi indicated by the error range in the first column of
Table 7 is very small. In fact V1, V2 are dominated by the
counterterm contributions (at a typical scale like µ = Mρ),
which are necessarily constant at O(p4). For comparison,
we also show the numerical values for the approximations
in (4.3) in the column dubbed accordingly.

6.2 Numerical evaluation of the O(p6) results

It is desirable to get a handle on the typical size of the cor-
rections to be expected atO(p6), andwe start the discussion
with the axial terms that we have evaluated analytically at
order p6. Our numerical estimate for these terms is obtained
by taking their real parts at the scale µ = Mρ, averaged
over phase space as before. The contributions from the
counterterms are the essential uncertainty. We have esti-
mated the order of magnitude of these polynomial terms
in the following manner. The low-energy constants depend
logarithmically on the renormalization scale [33]. It seems
unnatural for the constants to be much smaller than the
change induced by the running of the scale, e.g. changing
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the logarithms by one unit. The shifts in the polynomial
contributions of A1,2 induced by a change of the logarithm
by one unit is the following:

A1,ct = ± 1
192π4F 2

πF 2
K

{7M2
K − 7M2

π + s + t − 2u},

A2,ct = ± 1
768π4F 2

πF 2
K

{25M2
K − 17M2

π − 7t − 8u}.

(6.1)

In both cases, there are (potentially) large M2
K correc-

tions that could dominate the O(p6) contributions. As A4
consists exclusively of a counterterm contribution that is
scale independent by itself, the above procedure cannot
be applied here. We use instead an even rougher dimen-
sional estimate

A4,ct = ± 16
(4π)4F 2

πF 2
K

. (6.2)

Finally, we do an average of these polynomial terms as
before and quote the result in the second column of Table 8
as the final uncertainty at this order. We have not worked
out the amplitude A3 at order p6 because it is only needed
for a comparison with the amplitudes in [12] at order p4

and drops out in the basis used in the present work.
In order to generate an analogous estimate of the con-

tributions at order p6 for the vector terms, a two-loop cal-
culation is needed. This is beyond the scope of the present

Table 7. Average values for the vector amplitudes Vi in (3.16).
The symbol 〈Vi〉 denotes the average of the real part of the Vi

in units of MK . The first column displays the result at order
p4 (with the size of variation over phase space indicated), and
the second column gives the values in the approximation given
in (4.3). The last column contains an estimate of higher-order
contributions; see main text for details

O(p4) (4.3) uncertainty

〈V1〉 −1.26 ± 0.004 −1.25 ±0.4

〈V2〉 0.12 ± 0.002 0.12 ±0.2

〈V3〉 −0.02 ± 0.001 −0.02 ±0.1

〈V4〉 0 0 ±0.1

Table 8. Average values for the axial amplitudes Ai in (3.8),
as given by O(p4) and O(p6) ChPT. The central values in
the second column refer to the order p6 result at the scale
µ = Mρ, with the counterterms set to zero. For the estimates
of the uncertainties, see main text. The symbol 〈Ai〉 denotes
the average of the real part of Ai in units of MK . The term
A3 was not determined at order p6 for reasons explained in
the text

O(p4) O(p6)

〈A1〉 0 −0.07 ± 0.2

〈A2〉 −0.30 −0.25 ± 0.1

〈A3〉 0

〈A4〉 0 0 ± 0.4

work, and we content ourselves here with the rough esti-
mates displayed in the last column of Table 7. These are
obtained as follows. Concerning V1, we estimate the con-
tributions at order p6 and higher to be of the order of 30%
of the leading term. As V2 is suppressed at leading order,
we scale its uncertainty by a factor of 2. Finally, for di-
mensional reasons, the counterterm contributions to V3,4
are constant. The numbers displayed in the last column
for V3,4 are obtained from a dimensional estimate similar
to the one for A4 discussed above.

6.3 Predictions for the amplitudes
used in previous analyses

In the recent analysis [12] of radiative Ke3 decays, the IB
part was taken from [3]. It differs from the one displayed
in (3.13) through terms of order q and higher, and can be
obtained from V IB

µν by subtracting these additional terms.
In addition, a different basis of transverse tensors for the
SD part was used. In this subsection, we first discuss the
relation between the Lorentz invariant structure functions
in the two conventions, and then elaborate on their chi-
ral expansion.

The IB part used in [12] is

V IB
µν =

p′
µ

p′q

(
2pν

{
f+ − 2qWḟ+

}
− Wν

{
f2 − 2qWḟ2

})
+2Wµ

(
2pν ḟ+ − Wν ḟ2

)
− gµνf2. (6.3)

The form factors fi as well as their derivatives ḟi = dfi/dt
are evaluated with argument t. Here and below, barred
quantities indicate that the convention from [3], (6.3),
is used for the inner bremsstrahlung part. The SD part
changes accordingly, such that the sum of IB and SD re-
mains the same,

Vµν = V IB
µν + V SD

µν . (6.4)

Four of the eight Lorentz invariant amplitudes were re-
tained in [3, 12] and denoted by A, B, C and D. Here,
we extend this notation to the remaining four amplitudes
and write

V SD
µν =

A

M2
K

(pµqν − pq gµν) +
C

M2
K

(
p′

µqν − p′q gµν

)
+
(
p′q pµ − pq p′

µ

){ E

M4
K

p′
ν +

G

M4
K

pν

}
,

Aµν = i εµνρσ

{
B

M2
K

pρ +
D

M2
K

p′ρ
}

qσ (6.5)

+i ενρσλ pρp′σ

×
{(

p′q gλ
µ − p′

µqλ
) F

M4
K

+
(
pq gλ

µ − pµqλ
) H

M4
K

}
.

The relation to the Vi, Ai used here is
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Table 9. Values of the structure-dependent terms in the KTeV
conventions, as given by O(p4) ChPT [with the size of variation
over phase space indicated]

〈A〉 −1.34 ± 0.002 〈B〉 0.30

〈C〉 0.08 ± 0.005 〈D〉 −0.30

〈E〉 −0.02 ± 0.001 〈F 〉 0

〈G〉 0.02 ± 0.001 〈H〉 0

A = M2
K

(
Ṽ2 + p′q Ṽ3

)
,

B = −M2
K

(
A2 + p′WA3 + M2

πA4
)
,

C = M2
K

(
Ṽ1 − Ṽ2 − pq Ṽ3

)
,

D = M2
K (A1 + A2 + pWA3 + pp′A4) ,

E = M4
K

(
Ṽ3 − Ṽ4

)
,

F = M4
K (A3 − A4) ,

G = −M4
K Ṽ3,

H = −M4
K A3, (6.6)

where

Ṽ1 = V1 − 2�2f+

p′q
, Ṽ2 = V2 − 4ḟ+,

Ṽ3 = V3 − 2�2f+ − �2f2

p′q qW
, Ṽ4 = V4 − 2�2f+

p′q qW
,

�2fi = fi(t) − fi(W 2) − 2qWḟi. (6.7)

Equation (6.6) displays the transformation between the ba-
sis used in [12] and in the present work, while (6.7) presents
the changes induced by the difference in the IB part.7

The above relations allowus to calculate the phase space
averaged structure functions 〈A〉, 〈B〉, . . . in a straight-
forward manner. To be specific, we use linear form factors
f+, f2, as a result of which only the derivative term ḟ+ in
Ṽ2 matters. The final result is displayed in Table 9 where,
for reasons that become clear at the end of this subsection,
we stick to the values at order p4 in the chiral expansion.
In this approximation, the axial terms are constant – this
is why we do not display an error band in the last column
in Table 9. We now comment on some basic features of
the choice (6.3) for the IB part and (6.5) for the trans-
verse tensors. As for the impact of the difference in the
IB part, we note that, expanding in (6.6) the form fac-
tors fi(W 2) around q = 0, it is readily seen that the SD

7 In order to check the sign conventions used here and in [3,12]
– where the Pauli metric is used – we have algebraically evalu-
ated the expression of the decay width with (6.3) and (6.5) in
terms of f+, f2, A, B, C, D and in the limit of vanishing electron
mass. We found complete agreement with the corresponding
expressions given in (A1)–(A5) of [3], up to an obvious mis-
print in the line after (A3). The amplitudes E–H were not used
in [3, 12].

amplitude V SD
µν indeed differs from the one in the present

work only by terms of order q and higher, as it must be for
a reasonable choice of IB. On the other hand, as already
mentioned in Subsect. 3.2, these additional terms are singu-
lar at s = M2

π , and can potentially distort the amplitudes
near the boundary of phase space. The difference in the
choice of the SD part generates more pronounced effects.
As we have mentioned before, the structure functions V3,
A3 are suppressed by a factor of m2

e/M
2
K and are there-

fore inaccessible in the electron decay mode. The tensor
decomposition (6.5) does not make use of this fact. As a
result, certain simultaneous shifts in A, C, E, G (corre-
sponding to a change in V3) or simultaneous shifts in B, D,
F , H (corresponding to a change in A3) are unobservable.
Measurable combinations are

A +
p′q
M2

K

G = M2
K Ṽ2,

B − p′W
M2

K

H = −M2
K

(
A2 + M2

πA4
)
,

C − pq

M2
K

G = M2
K

(
Ṽ1 − Ṽ2

)
, (6.8)

D +
pW

M2
K

H = M2
K (A1 + A2 + pp′A4) ,

E + G = −M4
K Ṽ4,

F + H = −M4
K A4.

In other words, the decay width can be expressed in terms
of the quantities on the left hand side of (6.8). We conclude
that e.g. the structure functions C, D – or any linear com-
bination thereof – are not measurable in Ke3γ , as long as
V3, A3 are non-zero. In the following section, we discuss this
point in some more detail. In particular, we will provide
an interpretation of the quantities C and D determined by
the KTeV Collaboration in [12].

Finally, coming back to Table 9, we note that, because
A, B, C, and D are not observables, it does not make much
sense to work out their numerical magnitude at order p6.
On the other hand, their value at order p4 will be of use
in the following section.

7 Structure-dependent terms
in differential rates

7.1 E∗
γ distribution: theory

Of the various differential rates one may consider, the dis-
tribution dΓ/dE∗

γ stands out for the purpose of extract-
ing information on structure-dependent terms, as E∗

γ is
the very variable to distinguish bremsstrahlung and the
structure-dependent part of the amplitude. In our investi-
gation, we shall neglect the terms coming from the square
of the structure-dependent amplitude T SD. Furthermore,
we make use of the observation made in the previous sec-
tion that in the one-loop approximation, these structure
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Fig. 5. Photon energy distributions from inner bremsstrahlung
as well as the various structure-dependent terms. The notation
dΓX/dE∗

γ for the various X refers to (7.1). The normalization
factors are NVi, Ai = 200 NIB = 103MK/Γ (Ke3). We only cut
on the electron–photon angle, θcut

eγ = 5◦ [12]

functions are constant to rather high accuracy: we replace
them in the expression (B.1) for the square of the matrix
element by the averages 〈Vi〉, 〈Ai〉. We then obtain the
following decomposition of the photon spectrum:

dΓ

dE∗
γ

=
dΓIB

dE∗
γ

+
4∑

i=1

(
〈Vi〉 dΓVi

dE∗
γ

+ 〈Ai〉 dΓAi

dE∗
γ

)
+O (|T SD|2, ∆Vi, ∆Ai

)
. (7.1)

The quantity dΓVi
/dE∗

γ denotes the part of the spectrum
which is proportional to 〈Vi〉, and analogously for
dΓAi/dE∗

γ . [Remember that we define 〈Vi〉, 〈Ai〉 to be di-
mensionless.] The quantities ∆Vi, ∆Ai stand for the errors
introduced by this approximation.

In the following, we shall neglect the effect of V4 and
A4.8 The objective is to study the distributions dΓVi/dE∗

γ ,
dΓAi/dE∗

γ in order to quantify the possibility to extract
〈Vi〉 and 〈Ai〉 from data. In order to obtain experimental
information independent of the measurement of the total
rate, we follow the strategy of [12] and only discuss spectra
with arbitrary normalization. Furthermore, we follow the
procedure in that publication and deviate here from the
“standard cuts”, instead we use θcut

eγ = 5◦. We have found,
though, that such a reduction of the angle cut only increases
the size (and therefore the expected statistics in an exper-
iment) of the bremsstrahlung and hardly has any effect
on the structure-dependent spectra. The relevant photon
spectra are shown in Fig. 5. Note that the bremsstrahlung

8 We have verified that the distributions for V4 and A4 are
indeed considerably smaller than the ones discussed here, in
addition to the fact that both 〈V4〉 and 〈A4〉 vanish at leading
chiral order. This holds for all differential rates discussed here
and in Sect. 7.4.

distribution is scaled down by a factor of 200 relative to
the structure-dependent parts. We observe the expected
fall-off of dΓIB/dE∗

γ ∝ 1/E∗
γ as well as the linear rise of

all structure-dependent spectra for small photon energies.
As phase space bends them down to zero at maximum
photon energy, all structure-dependent distributions show
a maximum (a maximum and a minimum in the case of
A2), which for V1, V2 occurs around E∗

γ = 80 MeV, for A1
slightly higher, around E∗

γ = 100 MeV. Although the A2
spectrum has a form distinct from all others, its magni-
tude is far too small to be observable. In view of the chiral
O(p4) prediction A1 = 0, this means that no effects of the
chiral anomaly are likely to be extracted from the photon
energy spectrum.

The remaining three structure-dependent spectra are
remarkably similar in shape, if not in height. If we assume
that the experimental accuracy is not sufficient to observe
the slightly shifted positions of the maxima in the three
spectra, we have approximately

f(E∗
γ) .=

dΓV1

dE∗
γ

≈ 2.6 × dΓV2

dE∗
γ

≈ 2.4 × dΓA1

dE∗
γ

, (7.2)

where we have taken the height of the peaks as the measure
for the proportionality factors, irrespective of the exact
energy where they occur. [In case that more accurate data
is available, it would be straightforward to incorporate a
more refined representation of the photon spectrum than
the one proposed here.]

Equation (7.2) is the main result of our investigation
of the photon spectrum:
(1) To good approximation, the photon energy spectrum
originating from the bremsstrahlung amplitude is distorted
by one single function f(E∗

γ). The information on the SD
terms is contained in the effective strength 〈X〉 that mul-
tiplies f(E∗

γ),

dΓ

dE∗
γ

≈ dΓIB

dE∗
γ

+ 〈X〉 f(E∗
γ),

〈X〉 = 〈V1〉 + 0.4 〈V2〉 + 0.4 〈A1〉. (7.3)

(2) The three amplitudes V1, V2, A1 differ mainly in terms
of the weight with which they contribute to 〈X〉. The latter
can be calculated in ChPT,

〈X〉 =

{
−1.2 O(p4),
−1.2 ± 0.4 O(p6).

(7.4)

Note that the uncertainty in the contribution from the vec-
tor channel has only been roughly estimated here.
(3) In order to measure 〈X〉, one may use the represen-
tation (7.3) for the spectrum, insert the explicit form of
f(E∗

γ) and do a fit to the data with 〈X〉 as a free parameter.
Alternatively, one may take any of the amplitudes V1,2 or
A1, take it to be constant over phase space, and perform a
fit to the bremsstrahlung spectrum. The result will be the
same. However, it is clear that in this manner, one has not
determined the chosen amplitude to perform the fit, but
just the effective strength 〈X〉.
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7.2 E∗
γ distribution: experiment

We now discuss the result of the KTeV analysis [12] in light
of the previous subsection. First, we note that in [12], all
SD parts were set to zero, except the amplitudes C, D, that
were taken to be constant over phase space. This amounts
to the procedure mentioned in point (3) above, except
that two amplitudes have been retained in [12], while one
is sufficient to measure 〈X〉. Indeed, [12] finds a strongly
eccentric error ellipse constraining the parameter space for
these two structure-dependent terms. In order to compare
the KTeV result with the above representation of 〈X〉, we
translate the KTeV amplitudes into our conventions. We
assume a linear form factor f+, use the relations (6.6) and
find that, with A = B = 0 ,

V1 = C/M2
K , V2 = 4ḟ+(0), A1 = D/M2

K . (7.5)

The Vi, Ai not listed are zero. In other words, the ampli-
tudes (7.5) result in the same photon spectrum as the one
generated by the amplitudes used in [12]. We therefore
conclude that the effective strength 〈X〉 is given in this
case by

〈X〉 = C + tan (23◦)D + 1.5M2
K ḟ+(0), (7.6)

where we have dropped the bracket notation for C, D, be-
cause 〈C〉 = C for constant amplitudes, and the angle is
introduced for easy comparison with [12]. The structure
of (7.6) has been confirmed by the observation made in [12]
that it is

C ′ = cos (25.8◦) [C + tan (25.8◦)D] (7.7)

which is best constrained by the data, with

C ′ = −2.5+1.5
−1.0(stat) ± 1.5(syst) [12]. (7.8)

This may be compared with the calculation in the frame-
work of ChPT. Using (7.6) and (7.4), and neglecting the
small difference in the angle, we find

C ′ = −1.6 ± 0.4 [ChPT], (7.9)

which agrees with (7.8) rather well.
While an interpretation of the KTeV result (7.8) as

a measurement of the effective coupling is sound, it does
not allow one to draw conclusions about the size of the
SD terms themselves because, as we have shown in the
previous section, C and D are not observable amplitudes
as long as the amplitude V3 is not negligible. In addition,
the assumption A = B = 0 made in the analysis of [12],
on the basis of the soft kaon approximation, is incorrect
and invalidates such an interpretation of C ′ even for a
negligible V3. Chiral perturbation theory may be used to
illustrate this point: we consider the amplitudes at order
p4 and disregard the structure function V3 altogether, then
from (6.6), we find

〈X〉 = 1.4 〈A〉︸ ︷︷ ︸
−1.9

+ 0.4 〈B〉︸ ︷︷ ︸
+0.1

+ 〈C〉︸︷︷︸
+0.1

+ 0.4 〈D〉︸ ︷︷ ︸
−0.1

+ 1.5 M2
K ḟ+(0)︸ ︷︷ ︸

+0.6

= −1.2, (7.10)

where we have again used the phase space average for the
structure functions, because they are not constant in this
case. Equation (7.10) shows that the main contribution
to the effective strength 〈X〉 is due to the amplitude A,
while C plays a minor role, and the contribution from D is
canceled by the one from B. Therefore, the approximation
of setting A and B to zero is not valid and, consequently,
〈X〉 is not dominated by 〈C〉 + 0.4〈D〉, and should not be
taken as a measure of this combination of amplitudes.

7.3 Systematic errors

We now discuss one potential source for systematic errors
in this procedure of determining the effective strength 〈X〉
and start with the observation that the analysis obviously
requires a rather precise knowledge of dΓIB/dE∗

γ . As we
consider unnormalized spectra, we are insensitive to overall
coupling constants and f+(0), but we should investigate
whether a shift in the Ke3 form factor parameters λ+, λ′′

+
can simulate a contribution to the spectrum similar to the
structure-dependent effects. For this purpose, we expand
a general bremsstrahlung spectrum with arbitrary form
factor around our choice for these parameters,

dΓIB

dE∗
γ

=
dΓIB

dE∗
γ

∣∣∣∣∣λ̄+=1

λ̄′′
+=0

+
(
λ̄+ − 1

) dΓλ̄+

dE∗
γ

+ λ̄′′
+

dΓλ̄′′
+

dE∗
γ

+ . . .

(7.11)
The two spectra dΓλ̄+

/dE∗
γ and dΓλ̄′′

+
/dE∗

γ are displayed
in Fig. 6 with a solid and a dashed line, respectively. We
observe that they are rather sizable, but very similar in
shape to the overall IB spectrum. Only a fine-tuned can-
cellation of both can lead to a peak-like structure, which
we find for

α
.=

1 − λ̄+

λ̄′′
+

= 0.080 ± 0.005. (7.12)

Stated differently, α has to be within this narrow range in
order for the combination

dΓ∆λ

dE∗
γ

=
dΓλ̄′′

+

dE∗
γ

− α
dΓλ̄+

dE∗
γ

(7.13)

to have a maximum. This means that, for example, a simul-
taneous reduction of λ+ by 8% as compared to the central
input value and the introduction of a quadratic term in the
form factor with λ′′

+ = (λc
+)2 (as suggested by K∗ pole sat-

uration) mimics a structure-dependent contribution with
a peak at roughly similar energies as f(E∗

γ).
The distribution (7.13) is displayed in Fig. 6 as a grey

band at α = 0.08. Note that the strength of the peak is
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Fig. 6. Photon energy distributions from inner bremsstrahlung,
proportional to (λ̄+−1) and λ̄′′

+, as well as a fine-tuned difference
between the two. The normalization factors are given by N∆λ =
100 Nλ̄+

= 10 Nλ̄′′
+

= 103MK/Γ (Ke3). We cut on the electron–

photon angle with θcut
eγ = 5◦ [12]

not big: for the chosen combination, it is about 10% of the
dominant spectrum 〈V1〉dΓV1/dE∗

γ . To illustrate potential
effects of this “background”, we compare these findings
to the latest KTeV form factor measurements [25], λ̄+ =
0.70 ± 0.06, λ̄′′

+ = 1.85 ± 0.40.9 Taking into account the
correlation [25] between λ̄+ and λ̄′′

+, we find that they lead
to α = 0.16 ± 0.01, and we conclude the following.
(1) Although these values for λ̄+, λ̄′′

+ are very different from
our assumed central ones, they do not lead to a peak-like
structure.
(2) Even in the worst possible case with α ≈ 0.08 and
λ̄′′

+ ≈ 2, the value for 〈X〉 based on the assumptions λ̄+ =
1, λ̄′′

+ = 0 is less negative than the true one. In other words,
the modulus of 〈X〉 would be even bigger in the real world,
by (20–25)%.

A more detailed analysis of this background phenom-
enon ought to be performed on real data.

7.4 Other distributions

We have emphasized that the study of the photon energy
spectrum, at least with the currently achievable statistics,
seems to give access to only one specific linear combination
of structure-dependent terms, which is most sensitive to
V1. Ideally one would find alternative distributions that
are more sensitive to the other terms V2, A1, A2 in order
to achieve a complete decomposition into the four (main)
structure functions. The strategy for studying the vari-
ous possible differential rates is to find those structure-
dependent contributions that differ in shape from inner
bremsstrahlung and, in contrast to dΓ/dE∗

γ , from each
other. We have studied differential rates with respect to
the other four independent variables E∗

π, E∗
e , x, W 2, but

9 Note the conflicting results in [27].
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Fig. 7. Pion energy distributions from inner bremsstrahlung
as well as the various structure-dependent terms. The notation
dΓX/dE∗

π is chosen in analogy to (7.1). The normalization
factors are NVi, Ai = 200 NIB = 103MK/Γ (Ke3). The cuts
Ecut

γ = 25 MeV, θcut
eγ = 5◦ were applied

also to related variables s, t, u, cos θ∗
eγ , cos θ∗

πγ . Where ap-
plicable, we have used the cuts Ecut

γ = 25 MeV, θcut
eγ = 5◦

in analogy to the procedure in [12].
One general feature can already be seen from the

dΓ/dE∗
γ plots and appears in almost all distributions: the

relative importance of V1, V2, A1, A2 is the same in most
cases, as the integral over a differential rate has to be
the same, no matter what kinematical variable is studied.
Therefore distributions tend to be most sensitive to V1,
followed by V2 and A1 at roughly equal strength. The ex-
ception to this rule is A2 that shows a sign change in most
distributions, but again in most cases it is suppressed with
respect to the other structure-dependent terms by at least
one order of magnitude.

We shall only discuss those differential rates in some de-
tail that seem tohave interesting features.Thedistributions
in W 2, cos θ∗

πγ seem to offer no promising possibilities to ex-
tract information on any of the structure-dependent terms
as their distributions are too similar to the dominant brems-
strahlung one, while those in E∗

e , x, or s show A2 curves
that have interesting shapes (usually with an additional
zero), but are probably far too much suppressed. More
promising seem to be the partial rates dΓ/dE∗

π that are
displayed in Fig. 7. There is no divergent behavior visible
in these distributions, all of them vanish at minimum and
maximum pion energies, and the partial rates for brems-
strahlung as well as for V1, V2, and A1 have one peak in the
spectrum (A2 is nearly completely suppressed here). We
observe that the bremsstrahlung distribution is peaked at
high pion energies (for E∗

π − Mπ ≈ 100 MeV), and so are
the V1 and A1 partial rates, even though their respective
peaks occur a bit lower. Distinct from all these is, how-
ever, the V2 contribution to the pion energy distribution
that is peaked at small pion energies. Although the overall
sensitivity is again by roughly a factor of 3 smaller than
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Fig. 8. Distributions with respect to cos θ∗
eγ from inner brems-

strahlung as well as the various structure-dependent terms. The
notation dΓX/d cos θ∗

eγ is chosen in analogy to (7.1). The nor-
malization factors are NVi, Ai = 200 NIB = 104/Γ (Ke3). The
photon energy cut Ecut

γ = 25 MeV was applied

that for V1, this partial rate might be a window to access
information on the structure function V2.

We remark, though, that this extraction might again
be obscured by uncertainties in the form factor f+: the
distributions dΓλ̄+

/dE∗
π and dΓλ̄′′

+
/dE∗

π, defined in com-
plete analogy to (7.11), also turn out to be peaked for lower
pion energies than the total bremsstrahlung distribution.
Of course this problem can be remedied by more precise
form factor data as provided e.g. in [25,27]. A more detailed
study should be performed with actual experimental data.

There is special interest in finding a partial rate with
a more pronounced contribution from A2 for the following
reason: as discussed in Subsect. 6.1, this is the only non-
vanishing contribution of the WZW-anomaly term, while
A1 vanishes at O(p4). We have commented before on the
sign change in the A2 distributions that often leads to can-
cellations. Figure 8 shows a partial rate in which A2 is
relatively prominent: its contribution becomes relatively
strong in dΓ/d cos θ∗

eγ in backward direction. The slope
of the total structure-dependent distribution in backward
direction, which can be thought of as the second derivative
with respect to cos θ∗

eγ at cos θ∗
eγ = −1, is potentially dom-

inated by A2. It seems therefore that if effects of the chiral
anomaly should be visible at all, it might be accessible in
the distribution with respect to the electron–photon angle,
in backward direction.

To conclude this section, we emphasize that this study
of possible additional partial rates is by no means meant
to be exhaustive. In particular, certain effects may only be
visible in double differential rates etc. We defer any such
more extensive study until experiments give hints about
the statistical feasibility of these various suggestions.

8 Conclusions and outlook

In this paper, we have analyzed various aspects of Ke3γ

decays.
(1) In the absence of radiative corrections, the decay ampli-
tude may be decomposed into an inner bremsstrahlung part
(IB) and a structure-dependent part (SD). Our construc-
tion of the bremsstrahlung amplitude guarantees that the
SD part is regular in the Mandelstam plane, aside from the
branch points required by unitarity. Structure-dependent
contributions can be parametrized in terms of eight struc-
ture functions Vi, Ai, i = 1, 4.
(2) We evaluate the expression for the width with massless
spinors. In other words, the electron mass is set to zero
in the numerator of the relevant terms. In this approxi-
mation, the contribution from the IB part can be written
entirely in terms of the Ke3 form factor f+. Furthermore,
the structure functions V3 and A3 cancel out.
(3) If this IB–SD separation is applied to the chiral O(p4)
representation of the K0

e3γ decay amplitude provided in [5],
one obtains leading order chiral predictions for the struc-
ture functions (they vanish at order p2). The axial terms are
constant and given in terms of the WZW anomaly, while the
vector terms receive contributions both from loop graphs
and the low-energy constants Lr

9 and Lr
10 of the chiral La-

grangian at order p4 [8]. At this order, all cuts in the loop
functions lie far outside the physical region, such that also
the vector terms can be approximated to good accuracy
by constants.
(4) In order to obtain control of higher-order corrections,
we have analyzed O(p6) contributions to the structure-
dependent terms. We have performed a complete calcu-
lation for the axial terms. For the vector ones, we have
determined the Li ×Lj contributions at order p6, and pro-
vided a very rough estimate of the remaining diagrams.

At this order, cuts appear in the physical region, both
in the axial and in the vector structure functions. The cor-
responding imaginary parts generate T -odd contributions
in some of the decay distributions. On the other hand, in
the cases considered in this work, they drop out.

The effect of the cuts on the real parts is diminished by
the fact that they appear as P -wave rescattering (axial)
or only in a tiny corner of phase space (vector). Domi-
nant uncertainties arise from M2

K corrections, generated
by counterterms at O(p6).
(5) The most precise and stable theoretical prediction can
be given for the ratio R of the radiative Ke3 decay width
relative to the non-radiative one. This ratio turns out to be
very insensitive to the details of the form factor f+, such
that the purely hadronic result is very precise. Structure-
dependent terms yield only a 1% correction to the brems-
strahlung, such that even a sizable uncertainty in the former
affects the precision of the total value only at the few per-
mille level. Our prediction for Ecut

γ = 30 MeV, θcut
eγ = 20◦,

R = (0.96 ± 0.01) × 10−2 , (8.1)

deviates from the KTeV results [12,14], but agrees well with
the recent measurement of the NA48 Collaboration [13];
see Table 1.
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(6) We have investigated the possibility to measure SD
terms. We find that the bremsstrahlung spectrum is mod-
ified by the SD terms essentially by one single function
f(E∗

γ), and that the different structure functions contribute
with different strength to the effective coupling multiplying
f(E∗

γ). The KTeV analysis [12] confirms this observation.
In their language, the effective coupling is obtained from
the combination

C ′ = cos (25.8◦)C + sin (25.8◦)D (8.2)

of amplitudes C, D, with

C ′ = −2.5+1.5
−1.0(stat) ± 1.5(syst) [12]. (8.3)

The calculation in the framework of ChPT gives

C ′ = −1.6 ± 0.4 [ChPT]. (8.4)

We have shown why the result (8.3) should not be inter-
preted as a measurement of the amplitudes C, D, but rather
as a measurement of the effective coupling of the SD terms
to f(E∗

γ).
(7) We have discussed alternative distributions over phase
space in a qualitative manner. In order to distinguish the
vector functions V1, V2, the distribution in pion energies
might be used. Effects of the chiral anomaly are highly sup-
pressed in most distributions. It might at best be accessible
in the differential rate with respect to the electron–photon
angle in backward direction.

Most extensions of this work will depend on the further
interplay between experimental accuracy and theoretical
desirability: for example, a complete calculation of the ra-
diative corrections would be desirable. We have refrained
here from comparing to the latest KTeV results on R with-
out cuts on the photon–electron angle [14], as this also
would necessitate special care concerning radiative correc-
tions; this will be considered elsewhere. As indicated in the
above, a more detailed study of how to disentangle the var-
ious structure-dependent terms would be possible once the
extraction of such terms from experiment becomes feasible.

The most imminent extension of this work, however,
is to provide predictions also for the other Kl3γ channels.
An analogous study of the charged channel K+

e3γ is most
straightforward and will be performed in due course. The
muon channels might in principle lend easier access to
structure-dependent contributions. The KTeV experimen-
tal determinations of the ratio R for KL → π±µ∓νµγ [14],
with improved uncertainty with respect to the previous
NA48 results [34], can already be considered as an inter-
esting starting point for a more comprehensive study of
radiative Kµ3 decays.
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Appendix A: Notation

We denote the charged pion and neutral kaon masses with
Mπ and MK , respectively. In numerical evaluations, we use

MK = 497.67 MeV, Mπ = 139.57 MeV, (A.1)

me = 0.511 MeV, Fπ = 92.4 MeV, FK = 1.22 Fπ.

The Ke3 form factor is parametrized by

f+(t) = f+(0)
[
1 + λ+

t

M2
π

+ λ′′
+

t2

M4
π

+ . . .

]
. (A.2)

As explained in the main text, the precise values of f+(0)
and λ+ do not matter in the present context. For numerical
evaluations, we use the parameter-free one-loop result [24]

f+(0) = 0.977, (A.3)

and a central value λc
+ = 0.0294. For the low-energy con-

stants we take

Lr
9(Mρ) = 6.3 × 10−3, Lr

10(Mρ) = −4.9 × 10−3. (A.4)

Lr
9 was chosen such that the chiral one-loop representation

for λ+ reproduces λc
+ = 0.0294. The sum Lr

9 + Lr
10 is

then fixed from πe2γ decays. We express the low-energy
constants in the following, scale-independent form [5]:

L̄9 = Lr
9(µ) − 1

512π2 log
M2

πM4
KM2

η

µ8 ,

L̄10 = Lr
10(µ) +

1
512π2 log

M2
πM4

KM2
η

µ8 . (A.5)

Again, the precise values of Lr
9 and Lr

10 do not matter.

Appendix B: Traces and decay widths

Here, we give the explicit expression for the sum over spins
in |T |2 in the limit where the relevant traces are evaluated
at me = 0, and comment on the relation between Ke3γ and
K0

e3γ decays in the presence of T -odd terms.

B.1: Traces

We write

N−1
∑
spins

|T |2 = a1f+(t)2 + a2f+(t)δf+ + a3δf 2
+

+
4∑

i=1

[(
bi ReVi + b5

i ReAi

)
f+(t)
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Table B.1. Prefactors that multiply the āi , b̄i etc.

â1 4/(e2 h) b̂1 4/(e h) b̂5
1 4/h

â2 1/(e2 h) b̂2 4/(e h) b̂5
2 4/(e h)

â3 4/e2 b̂4 1/(e h) b̂5
4 2/h

ĉ1 4/e ĉ5
1 1 d̂1 4/(e h)

ĉ2 1/e ĉ5
2 4 n/e d̂2 4/(e h)

ĉ4 1/e ĉ5
4 1 d̂4 2/(e h)

d̂5
1 1/h ê1 4/e ê5

1 1

d̂5
2 4/(e h) ê2 4/e ê5

2 4 n/e

d̂5
4 2/h ê4 4 n/e ê5

4 1

+
(
ci ReVi + c5

i ReAi

)
δf+

]
+ξ

4∑
i=1

[(
di ImVi + d5

i ImAi

)
f+(t)

+
(
ei ImVi + e5

i ImAi

)
δf+

]
+O(V 2

i , A2
i , ViAi), (B.1)

with

ξ = M−3
K q · (p′ × pe),

δf+ = M2
K(qW )−1 [f+(t) − f+(W 2)

]
,

N = 16παG2
F|Vus|2M2

K . (B.2)

With this convention for N , the right hand side in (B.1) is
dimensionless. In the limit me = 0, we immediately have

b3 = b5
3 = c3 = c5

3 = d3 = d5
3 = e3 = e5

3 = 0. (B.3)

We use the abbreviations

z pp′ = a, z pq = b, z ppe = c, z ppν = d,

z p′q = e, z p′pe = f, z p′pν = g, z qpe = h,

z qpν = j, z pepν = k, z pW = l, z p′W = m,

z qW = n, z M2
π = r, z = M−2

K ,

(B.4)

and decompose all the coefficients according to ai = âi āi

etc., where the prefactors âi , b̂i . . . are collected in Ta-
ble B.1. We obtain the following expressions for the coef-
ficients āi, b̄i and so on:

ā1 = 2 b d e (e + f) − e [h (2 a d − g) + j (e + f)

+ k (e + 2 f)] + h k r + 2 c d (e2 + 2 e f − h r),

ā2 = 4 e
{
e k [2 d (2 c − h) + h − j (1 + 2 c) − 2 k

+ 2 b (d − h + k)] − 2 e h l (d − j)

+2 h m [d h + c (j − 2 d) + k (1 − b)]
}

−4 n
{
2 b d e f + e h [2 d (−a + e + f) + g]

−e f j − 2 e k (f + a h) + 2 h k r

+2 c (2 d e f + e g h − 2 d h r)
}
,

ā3 = −2 e2 k [2 (c − h) (d − j) + k (2 b − 1)]

−2 e n
{
e k (c + d − h − j − l)

+m [d h + c (j − 2 d) + k (1 − b)]
}

+n2 [2 e (d f + c g − a k) + r (k − 2 c d)] ,

b̄1 = e [d h (e + 2 f) + g h (b + c) + j (c f − a h)

− k (b f + a h)] − h r (d h + c j − b k),

b̄2 = j (c e k − e h l − c h m) + b k [e (h − k) + h m]

+n h (c g − a k) + d h [e k − h m + n (e + f)] ,

b̄4 = 2 e
{
c e k (e − 2 g) + e [−b k (f + g)

+ a k (j − h + 2 k) + l (g h + f j − e k)]

+c m (2 g h − e j) + k m (b e − 2 a h)

+d (e + 2 f) (−e k + h m)
}

+2 n
{− [e (c g (e − 2 f) − 2 b f g

+ a (−e k + 2 f (j + k)))] + r [c (−2 g h + e j)

+ k (−b e + 2 a h)] + d (e + 2 f) (e f − h r)
}
,

b̄5
1 = h (d e + b g + c g) − j (c f + a h)

+k (b f − a h),

b̄5
2 = c e k (j − h) − b k [h (e + f − g) + e k]

+h [a k (h − j) + l (−g h + e j + f j + e k)

− d e n] ,

b̄5
4 = k

{−d e2 + a (e − 2 f) (j − h)

+b [2 f (g − f) − e (g + f)]
}

+k2 (−2 r b + 2 a e)

+l [g h (e − 2 f) + (e + 2 f) (f j − e k) + 2 r h k]

+m (d e h + b e k + 2 b f k − 2 a h k)

+n [f (d e + 2 b g − 2 a j) − r (b k + d h) + a e k]

+c
{
k (e2 − 2 r h + 2 r j) + m (2 g h − 2 f j)

+r j n + e [2 f k − j m − g (2 k + n)]
}
,

c̄1 = e
{
e k (d − h − j − l) + m (2 h j + b k − d h)

+c (e k − j m)
}

−e n [g (c + h) + f (d + j) − a k]

+n r (d h + c j − b k),

c̄2 = 8 e k [2 h j + b k − d h − c j]

+4 n
{
e k (c + d − 2 (h + j) − l)

+m (d h + c j − b k)
}− 4 n2 (d f + c g − a k),

c̄4 = 8 e2 k (d f + c g − g h − f j − a k + e k)

+4 e n [e k (f + g − 2 m)

+ m (−2 d f − 2 c g + g h + f j + 2 a k)]
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+4 n2 [r (d f + c g + k (e − a)) − 2 e f g] ,

c̄5
1 = 4 [b k (g − f) − e h k + a k (h − j) + e j k

− g h l + f j l − g h n + f j n] ,

c̄5
2 = b k (f − g) − k (a − 2 e) (h − j) + l (g h − f j),

c̄5
4 = 4 n [e k (g − f) + r k (h − j) + m (f j − g h)] .

(B.5)

The coefficients for the T -odd terms are

d̄1 = −e f + r h, d̄2 = h (f + g + h + j) + e (h − k),

d̄4 = 2 e2 g + 2 e h (f + g) − r e (h + j)

−2 r h (h + j),

d̄5
1 = 4 f, d̄5

2 = h (j − f + g − h) − e (h + k), (B.6)

d̄5
4 = g (2 e + 4 f) + 2 h (g − f) − r (h + j + 2 k),

and

ē1 = −r n + e (f + g),

ē2 = 2 e k − n (f + g + h + j),

ē4 = r (h + j) − e (f + g),

ē5
1 = 4 (g − f), ē5

2 = f − g + h − j,

ē5
4 = 4 n (f − g). (B.7)

B.2: On the relation between KL and K0 decays

Here we comment on the decay KL → π±e∓νeγ and its
relation to K0 → π−e+νeγ in light of the contributions
proportional to ξ in (B.1). We neglect CP -violating con-
tributions and write

|KL〉 =
1√
2

(|K0〉 − |K̄0〉) . (B.8)

The width for KL → π±e∓νeγ is proportional to∫
dLIPS (C1 + C2) , (B.9)

where

C1 =
∑
spins

∣∣T (KL → π−e+νeγ)
∣∣2,

C2 =
∑
spins

∣∣T (KL → π+e−ν̄eγ)
∣∣2. (B.10)

In C1 (C2), only the component |K0〉 (|K̄0〉) contributes.
We use CP to transform the second term to the first one.
Doing so, all three-momenta of the particles change sign.
Therefore, terms proportional to ξ drop out in the sum
C1 + C2 , and the decay width for KL → π±e∓νeγ agrees
with the one for K0 → e+νeπ

−γ , because in this decay, ξ
drops out as well after integration over the momenta. These
remarks remain true in the presence of the kinematical

cuts considered in the main text, in connection with the
ratio R. Therefore, up to terms quadratic in the structure-
dependent terms, only the real parts of the amplitudes
Vi, Ai occur in the width and in R. Finally, the decay width
for K0 → π−e+νe coincides with Γ (Ke3). This leads to the
expression (5.5) for the ratio R.

For T -odd terms in the context of K+
e3γ decays, see [35].

Appendix C:
Invariant amplitudes for K0

l3γ at order p4

In this appendix, we wish to give a simplified form of the
K0

l3γ one-loop amplitudes that is nevertheless as accurate
as the exact result (that can be found in [5]) for all prac-
tical purposes. As the structure-dependent terms start to
contribute at O(q), we intend to retain only terms of order
linear in the photonmomentumandneglect everything that
is O(q2) or higher. In this approximation, all the structure
functions V1/2/3 can be written in terms of the conventional
two-point function J̄(t) plus chiral logarithms and rational
functions of the masses. As remarked before, V4 = 0 at this
order. We use the following definitions and conventions:

M1 = MK , m1 = Mπ, M2 = Mη, m2 = MK ,

Σi = M2
i + m2

i , ∆i = M2
i − m2

i , (C.1)

the Källén function

λi(t) = λ(t, M2
i , m2

i ) (C.2)

= t2 + M4
i + m4

i − 2
(
t
(
M2

i + m2
i

)
+ M2

i m2
i

)
,

and the loop functions

J̄1(t) = J̄Kπ(t), J̄2(t) = J̄ηK(t),

J̄ab(t) = Jab(t) − Jab(0), (C.3)

Jab(q2) =
1
i

∫
ddl

(2π)d

1
(M2

a − l2) (M2
b − (l − q)2)

.

Our results can be written as follows:

V1 = − 8
F 2 L̄9 (C.4)

− 1
4F 2t

2∑
i=1

{(
2λi(t)

t
+ 3Σi +

(
M2

K − M2
π

))
J̄i(t)

+
tΣi − 2M2

i m2
i

16π2∆i
log

m2
i

M2
i

+
t − 3Σi

48π2

}
+ O(q),

V2 =
4

F 2

(
L̄9 + L̄10

)
(C.5)

− 1
2F 2

{
M2

K + M2
π

t
J̄1(t) − 1

16π2 +
4M2

KM2
π

λ1(t)

×
(

J̄1(t) − 1
16π2 − t − (

M2
K + M2

π

)
32π2 (M2

K − M2
π)

log
M2

K

M2
π

)}



J. Gasser et al.: Radiative Ke3 decays revisited 225

+
1

2F 2t

2∑
i=1

{
2M2

i m2
i

λi(t)
(
2t + 3

(
M2

K − M2
π

)
+ ∆i

)
×
(

J̄i(t) − 1
16π2

)
+
(

3m2
i +

2m2
i ∆i

t
+

3(M2
K − M2

π)∆2
i

t2

)
J̄i(t)

+
M2

i m2
i

16π2∆i
log

m2
i

M2
i

[
3
(

1 − M2
K − M2

π

t

)
+

2tΣi

λi(t)

+
3(M2

K − M2
π) + ∆i

2λi(t)

×
(

2(t − Σi) − ∆i +
3
10

(
M2

K − M2
π − ∆i

))]
− 1

16π2

(
t − m2

i +
M2

K − M2
π

2t
(3Σi + t)

)}
+ O(q),

V3 =
1

2F 2t

2∑
i=1

{
1
t2
((

M2
K − M2

π

)
t + 6∆2

i

)
J̄i(t) (C.6)

−
(
3Σi + (M2

K − M2
π)
)
(t − Σi) − 12M2

i m2
i

2λi(t)

×
(

J̄i(t) − 1
16π2

)
− M2

i m2
i

16π2t∆i

(
(M2

K − M2
π)t + 3∆2

i

λi(t)
+ 3

)
log

m2
i

M2
i

+
t − 6Σi

32π2t

}
+ O(q).

Note that this expansion necessarily upsets the analytic
structure as the cuts in the variables t and W 2 coincide in
the limit of vanishing photon momentum. However, these
cuts lie far outside the physical region (see discussion in
Sect. 4.2). Furthermore, despite their appearance, all the
functions above are regular and smooth at t = 0 and t =
(MK −Mπ)2. The results of the even further simplification
by setting t = 0 are displayed in the main text (4.3).

Appendix D:
Axial form factors at order p6

In this appendix, we give the explicit formulae for the next-
to-leading order corrections to the axial form factors A1,
A2, and A4, as written out formally in (4.4)–(4.6). The
necessary loop diagrams for this calculation are displayed
in Fig. D.1. We find the following combinations of loop
functions and counterterms:

S1(s) = 2Hr
ππ(s) +

16π2

3
Cr

1s s, (D.1)

S2(s) =
16π2

3
C2s s, (D.2)

T1(t) = Hr
Kπ(t) + Hr

ηK(t) +
16π2

3
Cr

1t t, (D.3)

T2(t) = T r
Kπ(t) + T r

ηK(t) +
16π2

3
Cr

2t t, (D.4)

U1(u) = −Hr
Kπ(u) − 3Hr

ηK(u) +
16π2

3
Cr

1u u, (D.5)

U2(u) = 2Hr
Kπ(u) + 6Hr

ηK(u) +
16π2

3
Cr

2u u, (D.6)

X1 = 2µπ − µK − µη +
16π2

3
(
Cr

1πM2
π + Cr

1KM2
K

)
,

(D.7)

X2 = − 31
12

µπ +
19
6

µK +
3
4

µη

+
16π2

3
(
Cr

2πM2
π + Cr

2KM2
K

)
. (D.8)

The loop function Hr
ab(x) is defined as

Hr
ab(x) =

1
12F 2

{
λ(x, M2

a , M2
b )

x
J̄ab(x)

+
x − 3Σab

24π2 − x

32π2 log
M2

aM2
b

µ4

− x Σab − 8M2
aM2

b

32π2∆ab
log

M2
a

M2
b

}
. (D.9)

π

π

Aν
had

K0 π−

Vµ
em

a)

K

π,η

Vµ
em

K0 π−

Aν
had

b)

K

π,η
Aν

had

Vµ
emπ−

K0

c) d)

K0 π−

Vµ
em

Aν
had

π,K

e)

K0 π−

Vµ
emAν

had

π,K,η

Fig. D.1. Diagrams that contribute to the anomalous ampli-
tude Aµν at order p6 [in a), the contribution from π, η inter-
mediate states vanishes]. Charges of the mesons running in the
loops are not indicated. The filled vertices denote a contribu-
tion from the anomalous Lagrangian at order p4. External line
insertions in the tree diagram of order p4 are not displayed
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Table D.1. The coefficients from (D1)–(D.8) in terms of the
renormalized low-energy constants CW r

i . For example, Cr
1s =

4CW r
13 −10CW r

14 + . . .. Constants without superscript r are scale
independent

Cr
1s Cr

1t Cr
1u Cr

1π Cr
1K C2s Cr

2t Cr
2u Cr

2π Cr
2K C4A

CW r
2 0 0 0 24 −24 0 0 0 −48 48 0

CW r
4 0 0 0 8 −16 0 0 0 −16 0 0

CW r
5 0 0 0 −8 16 0 0 0 16 0 0

CW
7 0 0 0 0 0 0 0 0 −16 −32 0

CW
9 0 0 0 0 0 0 0 0 0 48 0

CW r
11 0 0 0 0 0 0 0 0 0 −48 0

CW r
13 4 4 4 −10 2 −8 −10 0 22 10 −16

CW r
14 −10 −10 −4 12 18 20 16 0 −20 −16 48

CW r
15 8 8 8 −12 −12 −16 −20 0 28 20 −32

CW r
19 2 2 2 −2 −2 −4 −2 0 2 2 0

CW r
20 −2 −2 −8 8 2 4 8 0 −20 −8 16

CW r
21 4 4 4 −4 −4 −8 −4 0 4 4 0

CW r
22 −1 −1 −4 4 1 6 4 8 −10 −4 8

CW
23 9 9 6 −6 −9 −18 −12 −12 6 12 8

The other functions can also be written in relatively com-
pact forms:

T r
Kπ(t) =

1
24F 2

{
13t

×
[
J̄Kπ(t) − 1

32π2

(
log

M2
KM2

π

µ4 +
ΣKπ

∆Kπ
log

M2
K

M2
π

)]

−
[
2ΣKπ + 16∆Kπ

−
(

8ΣKπ − 11∆Kπ +
8∆2

Kπ

t

)
∆Kπ

t

]
J̄Kπ(t)

+
M2

KM2
π(2∆Kπ + t)

4π2t∆Kπ
log

M2
K

M2
π

− (t − 3ΣKπ)(t − ∆Kπ)
12π2t

}
, (D.10)

T r
ηK(t) =

1
24F 2

×
{

t

[
J̄ηK(t) − 1

32π2

(
log

M2
η M2

K

µ4 +
ΣηK

∆ηK
log

M2
η

M2
K

)]

+

[
2ΣηK + 8∆ηK

−
(

8
3

ΣηK + 9∆ηK − 8∆2
ηK

t

)
∆Kπ

t

]
J̄ηK(t)

+
M2

η M2
K(2∆Kπ − t)

4π2t∆ηK
log

M2
η

M2
K

− (t − 3ΣηK)(t − ∆Kπ)
12π2t

}
, (D.11)

µa =
M2

a

32π2F 2 log
M2

a

µ2 , (D.12)

where we have used Σab = M2
a + M2

b , ∆ab = M2
a − M2

b ,
and the two-point function J̄ab(x) as defined in (C.3). The
combinations of low-energy constants occurring in (4.4)–
(4.6) and (D1)–(D.8) are given in Table D.1 according to
the numbering in [33].

Appendix E:
Inner bremsstrahlung in K0

l3γ decays

In this appendix we discuss the separation of the hadronic
tensor Vµν into an IB and a SD part. To be specific, we
imagine a calculation in the framework of ChPT to all or-
ders and discuss the decomposition there. The relevant di-
agrams can be grouped in two classes, displayed in Fig. E.1.
The hatched blobs denote one-particle irreducible contri-
butions. The diagram b generates a pole in the variable
s = (p′ + q)2, at s = M2

π , corresponding to the interme-
diate pion state. We isolate the contribution of this pole
by writing

Vµν = Ṽµν +
p′

µ

p′q
[
2pνf+(W 2) − Wνf2(W 2)

]
, (E.1)

where W = p−p′ −q. In the following, we assume that this
is the only singular part at q = 0 in the tensor Vµν , or, in
other words, that Ṽµν is regular at q = 0. This is the only
assumption in the derivation of the final expression for the
IB term. We have checked that it is true at one-loop order
in ChPT, see below, and we see no reason why it should
not be correct to any order, and thus true in QCD. Next,
we write this regular part as

Ṽµν = v0 gµν + v1 p′
µqν + v2 Wµqν + v3 p′

µWν

+v4 p′
µp′

ν + v5 Wµp′
ν + v6 WµWν . (E.2)

The Ward identity (3.6) generates three conditions on Ṽµν ,

v0 + v1 p′q + v2 qW = 2�f+ − f2,

v3 p′q + v6 qW = 2�f+ − �f2,

π−

Vµ
em

K0

Vν
had

a) b)

Fig. E.1. Diagrams for Vµν , evaluated in the framework of
ChPT.The hatched blobs denote one-particle irreducible graphs
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v4 p′q + v5 qW = 2�f+, (E.3)

with
�fi = fi(t) − fi(W 2). (E.4)

The first equation can be solved for v0. Furthermore, we set

v5 =
2�f+

qW
+ ṽ5, v6 =

2�f+ − �f2

qW
+ ṽ6, (E.5)

and we are left with

v4 p′q + ṽ5 qW = 0,

v3 p′q + ṽ6 qW = 0. (E.6)

At this stage, we use the fact that the Lorentz invariant
amplitudes vi are defined for any value of the kinematic
variables p′q, qW , and that the amplitudes are assumed to
be non-singular at p′q = 0. It then follows that ṽ5,6 are
proportional to p′q,

ṽ5,6 = −p′q ṽ4,3, (E.7)

where the sign and the numbering is chosen for convenience.
Finally, we obtain

v3,4 = qW ṽ3,4. (E.8)

Collecting the results, we find that V SD
µν can be written in

the form displayed in (3.16), with

(V1, V2, V3, V4) = (v1, v2, ṽ3, ṽ4). (E.9)

Appendix C contains the explicit expression of the form
factors Vi in the limit q = 0, illustrating the fact that they
indeed are non-singular at q = 0 at next-to-leading order
in ChPT, as mentioned above.
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